Методы контроля, выявляющие дефекты. Дефекты и контроль качества сварных соединений Характерные дефекты деталей

  • 15.12.2021

При контроле деталей очень важно проверять их на наличие скрытых дефектов (поверхностных и внутренних трещин). Этот контроль особенно необходим для деталей, от которых зависит безопасность эксплуатации.

Существует большое количество различных методов обнаружения скрытых дефектов на деталях. В ремонтном производстве нашли применение следующие методы: опрессовки, красок, люминесцентный, намагничивания, ультразвуковой.

Метод опрессовки применяют для обнаружения скрытых дефектов в полых деталях. Опрессовку деталей производят водой (гидравлический метод) и сжатым воздухом (пневматический метод).

Метод гидравлического испытания применяют для выявления трещин в корпусных деталях (блок и головка цилиндров). Испытание производится на специальных стендах, которые обеспечивают герметизацию всех отверстий в контролируемых деталях. При испытании полость детали заполняют горячей водой под давлением 0,3.. .0,4 МПа. О наличии трещин судят по подтеканию воды.

Метод пневматического испытания применяют при контроле на герметичность таких деталей, как радиаторы, баки, трубопроводы и др. Полость детали в этом случае заполняют сжатым воздухом под давлением, соответствующим техническим условиям на испытание, и затем погружают в ванну с водой. Выходящие из трещины пузырьки воздуха укажут место нахождения дефектов.

Метод красок основан на свойстве жидких красок к взаимной диффузии. При этом методе на контролируемую поверхность детали, предварительно обезжиренную в растворителе, наносят красную краску, разведенную керосином. Краска проникает в трещины. Затем красную краску смывают растворителем, и поверхность детали покрывают белой краской. Через несколько секунд на белом фоне проявляющей краски появляется рисунок трещины, увеличенной по ширине в несколько раз. Этот метод позволяет обнаруживать трещины, ширина которых не менее 20 мкм.

Люминесцентный метод основан на свойстве некоторых веществ светиться при облучении их ультрафиолетовыми лучами. При контроле деталей этим методом ее сначала погружают в ванну с флюоресцирующей жидкостью, в качестве которой применяют смесь из 50% керосина, 25% бензина и 25% трансформаторного масла с добавкой флюоресцирующего красителя (дефектоля) или эмульгатора. Затем деталь промывают водой, просушивают струёй теплого воздуха и припудривают порошком силикагеля. Силикагель вытягивает флюоресцирующую жидкость из трещины на поверхность детали. При облучении детали ультрафиолетовыми лучами порошок силикагеля, пропитанный флюоресцирующей жидкостью, будет ярко светиться, обнаруживая границы трещины. Люминесцентные дефектоскопы применяют при обнаружении трещин шириной более 10 мкм в деталях, изготовленных из немагнитных материалов.

Метод магнитной дефектоскопии нашел наиболее широкое применение при контроле скрытых дефектов в деталях, изготовленных из ферромагнитных материалов (сталь, чугун). Для обнаружения дефектов этим методом деталь сначала намагничивают. Магнитные силовые линии, проходя через деталь и встречая на своем пути дефект (например, трещину), огибают его как препятствие с малой магнитной проницаемостью. При этом над дефектом образуется поле рассеивания магнитных силовых линий, а на краях трещины - магнитные полюсы.

Для того чтобы обнаружить неоднородность магнитного поля, деталь поливают суспензией, состоящей из 50 % раствора керосина и трансформаторного масла, в котором во взвешенном состоянии находится мельчайший магнитный порошок (окись железа - магнетит). При этом магнитный порошок будет притягиваться краями трещины и четко обрисует ее границы.

После контроля на магнитных дефектоскопах детали необходимо размагнитить. Это достигается при переменном токе путем медленного вывода детали из соленоида, а при постоянном - за счет изменения полярности при постепенном уменьшении силы тока.

Метод магнитной дефектоскопии обладает высокой производительностью и позволяет обнаруживать трещины шириной до 1 мкм.

Ультразвуковой метод обнаружения скрытых дефектов основан на свойстве ультразвука проходить через металлические изделия и отражаться от границы двух сред, в том числе и от дефекта.

В зависимости от способа приема сигнала от дефекта различают два метода ультразвуковой дефектоскопии: просвечивания и импульсный.

Метод просвечивания основан на появлении звуковой тени за дефектом. В этом случае излучатель ультразвуковых колебаний находится по одну сторону от дефекта, а приемник - по другую.

При контроле детали к ее поверхности подводят излучатель ультразвуковых колебаний, который питается от генератора. Если дефекта в детали нет, то ультразвуковые колебания, отразившись от противоположной стороны детали, возвратятся обратно и возбудят электрический сигнал в приемнике. При этом на экране электронно-лучевой трубки будут видны два всплеска: слева - излучаемый импульс и справа - отраженный от противоположной стенки детали (донный).

Если в детали имеется дефект, то ультразвуковые колебания отразятся от дефекта, и на экране трубки появится промежуточный всплеск.

Путем сопоставления расстояний между импульсами на экране электронно-лучевой трубки осциллоскопа и размеров детали можно определить не только местонахождение дефекта, но и глубину его залегания.

Метод ультразвуковой дефектоскопии обладает очень высокой чувствительностью и применяется при обнаружении внутренних дефектов в деталях (трещин, раковин, шлаковых включений и т. п.).

Максимальная глубина прозвучивания для стальных деталей до 3 м, а минимальная 7 мм.

Магнитоакустический метод. Метод основан на слабом намагничивании изделия. При перемещении искателя прибора возле дефектного места детали в приемнике, выполненном виде катушки колебательного контура меняется наведенная э.д.с., которая через усилитель воспринимается в телефонных наушниках.

При перемещении искателя прибора через дефектные места детали тон звука в телефоне резко меняется.

Применяются при дефектоскопии канатов, сварочных швов, рельсов.

Внешний осмотр сварного соединения . Внешним осмотром можно выявить наружные дефекты соединения: подрезы, незаверенные кратеры, наплывы, поверхностные поры, непровары, трещины, прожоги, наличие смещения сваренных деталей.

Перед осмотром сварной шов и прилегающие поверхности зачищают от окалины, шлака, брызг металла. Для осмотра можно применить лупу с 5-10-кратным увеличением.

Проверка сварных швов на непроницаемость . Проверка на непроницаемость проводится для емкостей, работающих под давлением жидкостей или газов, после проверки наружным осмотром и устранения дефектов.

Испытание гидростатическим давлением производится одним из двух способов.

Первый способ заключается в полном или частичном заполнении водой для открытых емкостей с временем выдержки 2...24 ч. Емкость считается выдержавшей испытание, если в течение установленного времени не будет пропусков воды и не снизится ее уровень.

Второй способ заключается в том, что закрытые сосуды (котлы, трубопроводы) заполняются водой с созданием избыточного контрольного (в 1,5...2 раза выше рабочего) давления. Изделие выдерживается под избыточным давлением 5 мин, потом давление снижают до рабочего, околошовную зону (на 15...20 мм от шва) обстукивают молотком с круглым бойком. Участки шва с течью в виде капель и запотевания отмечаются мелом. Вода сливается, а отмеченные участки шва вырубаются и завариваются, после этого изделие подвергается повторному испытанию.

Испытание давлением газа применяется для определения непроницаемости емкостей или трубопроводов, работающих под давлением.

При проверке испытуемая емкость герметизируется и в нее подают газ (воздух, азот, инертные газы) до получения в ней давления, заданного техническими условиями. Затем все сварные швы промазываются мыльным раствором (100 г мыла на 1 л воды). Признаком брака служит появление мыльных пузырей на промазанной поверхности.

Малогабаритные емкости при возможности герметизируют заглушками, погружают в ванну с водой и подают газ под давлением на 10...20% выше рабочего. Дефекты в швах определяют по появлению пузырьков газа в воде у швов.

Испытание аммиаком основано на свойстве некоторых индикаторов (водный раствор азотнокислой ртути или спирто-водный раствор фенолфталеина) изменять окраску под действием сжиженного аммиака. При этом способе контроля сварных швов тщательно очищается поверхность сварного соединения от шлака, ржавчины и масла. После этого на одну сторону шва укладывается бумажная лента или ткань, пропитанная индикатором, а с другой стороны нагнетают воздух с примесью 1% аммиака. Давление воздуха не должно превышать расчетного для испытуемой конструкции.

При наличии дефектов в шве аммиак окрашивает бумагу или ткань с индикатором в серебристо-черный цвет через 1...5 мин.

Изготовление и монтаж сварных конструкций производится в соответствии со Строительными нормами, правилами и техническими условиями. Существующие способы контроля сварных швов и изделий позволяют выявлять практически все дефекты их, встречающиеся в практике сварки. В зависимости от ответственности сварных конструкций применяют соответствующие способы контроля. Наиболее целесообразны комплексные испытания, включающие ряд параллельно используемых методов контроля. В табл.48 приведен Перечень методов контроля, обычно используемых для проверки качества различных сварных конструкций.

Наружный осмотр и проверка размеров шва. Пользуясь лупой с 10-20-кратным увеличением, можно заметить мелкие волосяные трещины и поры. Если предполагают наличие трещины, то исследуемый участок металла зачищают личным напильником, наждачной бумагой, промывают спиртом и травят 10%-ным раствором азотной кислоты до появления матовой поверхности. После осмотра металл зачищают наждачной бумагой и протирают денатурированным спиртом для удаления кислоты.

Подготовку кромок швов проверяют шаблонами или универсальными измерителями (см. гл. VIII). В необходимых случаях методы контроля указываются в технических условиях на изготовление сварных конструкций.

Испытание механических свойств наплавленного металла и сварного соединения. Для этих испытаний (ГОСТ 6996-66) одновременно со швом сваривают пробные пластины из того же металла и на тех же режимах. Из пластин изготовляют образцы установленной ГОСТ 6996-66 формы и размеров. Образцы подвергают испытаниям в лаборатории для определения механических свойств наплавленного металла или сварного соединения: временного сопротивления при разрыве, относительного удлинения, ударной вязкости, твердости.

Исследование макро- и микроструктуры. Макроструктуру металла, видимую невооруженным глазом, получают на отшлифованной поверхности образца, протравленной 10%-ным водным раствором азотной кислоты. Шлиф делают на образцах, вырезанных из шва или пробных пластин. Макроструктура выявляет непровары, шлаковые включения, раковины, поры, трещины, несплавление и пр.

Микроструктуру исследуют при увеличении в 100-1000 раз под микроскопом. Поверхность шлифа должна быть тщательно отполирована и протравлена 2-4%-ным спиртовым раствором азотной кислоты или другими специальными реактивами. Микроструктура позволяет обнаружить в шве перегрев и пережог металла, наличие окислов по границам зерен, изменение структуры и состава металла при сварке, микроскопические трещины и пр.



Исследование макро- и микроструктуры проводят в лаборатории и по их результатам судят о правильности режима сварки. Эти испытания позволяют также установить причины дефектов в шве и предупредить их появление в процессе сварки.

Гидравлические и пневматические испытания сосудов. Цель пневматических испытаний - проверка плотности шва. Гидравлические испытания, помимо проверки плотности швов, дают возможность определить прочность сосуда при наибольших нагрузках.

При гидравлическом испытании сосуд наполняют водой и с помощью насоса в нем создают давление, превышающее максимальное рабочее давление для данного изделия. Для сосудов, у которых рабочее давление менее 5 кгс/см 2 , величина пробного гидравлического давления берется на 50% больше величины рабочего давления, но не ниже 2 кгс/см 2 . При рабочем давлении свыше 5 кгс/см 2 пробное гидравлическое давление должно на 25% (но не менее чем на 3 кгс/см 2) превышать рабочее давление.

Под пробным давлением сосуд выдерживают 5 мин. Затем давление снижают до рабочего и швы обстукивают на расстоянии 15-20 мм от кромок закругленным молотком весом 1 кГ, после чего швы тщательно осматривают. Места, в которых обнаружены течь или потение, отмечают мелом и после снятия давления вырубают или удаляют поверхностной резкой и вновь заваривают.

Пневматическое испытание выполняется сжатым воздухом только при рабочем давлении сосуда. Плотность швов проверяют, обмазывая их мыльным раствором или погружая в воду, если это позволяют габариты сосуда. В местах пропуска воздуха появляются пузыри. В целях безопасности пневматическое испытание производят только после предварительного гидравлического испытания сосуда.

Проверка плотности шва. Плотность шва проверяют керосином. Шов с одной стороны обмазывают мелом, разведенным на воде. После высыхания мела шов с обратной стороны смачивают керосином. При наличии неплотностей, пор и трещин керосин просачивается через них и на меловой окраске появляются желтые пятна. Этим способом проверяют швы резервуаров, не работающие под давлением.

Плотность швов проверяют и химическим методом (по способу С. Т. Назарова). Для этого швы снаружи оклеивают полосками бумаги или прокладывают по ним марлевые бинты; бумага и бинты пропитываются предварительно 5%-ным водным раствором азотнокислой ртути или фенолфталеина. В испытуемый сосуд под рабочим давлением накачивают воздух, содержащий примесь 1% аммиака. Проникая через неплотности и поры шва, аммиак вызывает потемнение полосок бумаги или бинтов в месте расположения дефекта.

Для испытания плотности швов днищ резервуаров применяют следующий способ. Пространство под днищем герметизируют плотным водонепроницаемым грунтом и под днище впускают аммиак из баллонов в смеси с воздухом, создавая под днищем давление 0,8-1,0 кгс/см 2 . Швы с другой стороны днища тщательно зачищают и поливают 10%-ным спиртоводным раствором фенолфталеина, имеющим вид молока. В местах неплотностей аммиак проникает через шов и окрашивает раствор в красный цвет. Следует иметь ввиду, что остатки шлака на шве, обладая свойствами щелочи, также могут вызвать покраснение раствора, что не является признаком неплотности шва. Данный способ не позволяет также выявить мелкие загрязненные дефекты шва.

Применяют также вакуумный способ проверки плотности швов, например, днищ резервуаров. Шов смачивают мыльным раствором и на проверяемый участок устанавливают вакуумную камеру с крышкой из прозрачного плексигласа. Камера не имеет дна и уплотняется на поверхности листа резиновой прокладкой. При откачке вакуум-насосом воздуха из камеры в ней появляются пузыри в местах расположения дефектов шва (трещин, пор и др.).

Плотность сварных и паяных швов проверяют также с помощью гелиевых и галоидных течеискателей. При проверке гелиевыми течеискателями в контролируемом сосуде создают вакуум, а швы снаружи обдувают смесью гелия с воздухом. При неплотности в шве гелий проникает в сосуд, а затем поступает в течеискатель, который обнаруживает присутствие гелия в сосуде. Другой способ состоит в том, что в контролируемый сосуд подают под давлением гелий, а специальным щупом, соединенным с вакуум-насосом и камерой течеискателя проводят по швам и улавливают протекание гелия из сосуда. Применяют гелиевые течеискатели ПТИ-4А и ПТИ-6. Течеискатель ПТИ-6 имеет высокую чувствительность, равную 10 -7 см 3 мм рт. ст./сек.

При использовании галоидных течеискателей внутри контролируемого сосуда создают избыточное давление и вводят галоидный газ (фреон-12), который проникает через неплотности шва и улавливается вакуумным щупом течеискателя.

Галоидный течеискатель ВАГТИ-4 имеет чувствительность меньшую, чем гелиевый, равную 10 -4 -10 -5 см 3 мм рт. ст./сек. Галоидные течеискатели нельзя применять в цехах, где производят сварку и пайку с флюсами, содержащими фтор и хлор, так как присутствие этих газов в воздухе цеха вызывает ложные сигналы в течеискателе.

С помощью течеискателей можно обнаруживать микроскопические течи, которые не могут быть выявлены другими методами. Этот способ применяется при проверке плотности швов ответственных изделий (например, сосудов и трубопроводов с вакуумной теплоизоляцией для хранения и транспортирования сжиженных газов - кислорода, азота, водорода).

Просвечивание швов. Просвечиванием обнаруживают внутренние дефекты - трещины, непровары, поры, шлаковые включения. Этим способом проверяют швы ответственных изделий, например сосудов, работающих под давлением. Для просвечивания применяют рентгеновские лучи или излучение радиоактивных элементов (гамма-лучи). Эти лучи, не видимые человеческим глазом, способны проникать через толщу металла, действуя на светочувствительную фотопленку, приложенную к шву с обратной стороны.

В тех местах шва, где имеется дефект, поглощение лучей металлом будет меньше, и они окажут более сильное воздействие на чувствительную к лучам эмульсию пленки. Поэтому в данном месте на пленке после проявления будет темное пятно, по размерам и форме соответствующее имеющемуся дефекту. Снимок шва на пленке называется рентгенограммой (или гаммограммой) шва. Обычно просвечивают 10-25% общей длины швов. В особо ответственных конструкциях просвечивают все швы.

Для просвечивания применяют рентгеновские аппараты, состоящие из специального трансформатора с выпрямителем и особой лампы - рентгеновской трубки.

В качестве источников гамма-лучей используют следующие радиоактивные вещества:

Кобальт-60 обладает наиболее жесткими, сильно проникающими лучами, поэтому применяется для просвечивания тяжелых металлов большой толщины. Остальные изотопы имеют значительно более мягкое излучение и используются для меньших толщин. Наиболее мягкое (приближающееся к рентгеновскому) излучение дает тулий-170, используемый для просвечивания малых толщин и легких сплавов.

Определение дефектов при просвечивании гамма-лучами металла толщиной хуже, чем при просвечивании рентгеновскими лучами. Поэтому гамма-лучи используют только в тех случаях, когда рентгеновские лучи применить нельзя из-за формы изделий, малой доступности шва или слишком большой толщины металла.

Однако просвечивание гамма-лучами имеет и ряд преимуществ перед рентгеновским, а именно: обеспечивается возможность просвечивания труднодоступных мест на изделии; возможность просвечивания швов одновременно в нескольких точках; возможность контроля кольцевых швов из одной точки; безотказность и длительность (несколько лет) работы радиоактивных препаратов; простота, невысокая стоимость и легкость транспортировки просвечивающей установки. Просвечивание рентгеновскими и гамма-лучами выполняет только специально обученный персонал. Радиоактивное и гамма-излучение опасно для человеческого организма при длительном воздействии на него. Поэтому при просвечивании применяются специальные меры защиты обслуживающего персонала и окружающих лиц от действия этих лучей (свинцовые контейнеры, экраны и пр.).

Схемы способов просвечивания сварных швов показаны на рис. 197. На рис. 198, а показан переносный защитный контейнер, а на рис. 198, б - ампула для радиоактивного вещества.

Для рентгеновского просвечивания применяют промышленные установки РУП-120-5 и РУП-200-5. Для просвечивания гамма-лучами - установки (дефектоскопы) ГУП-Со-0,5-1; ГУП-Со-5-1 и ГУП-Со-50. Используются также дефектоскопы РИД-21-Г (рис. 199) конструкции Института радиационной техники, имеющие облегченные контейнеры не из свинца, а из вольфрамового сплава.

ГОСТ 7512-55 установлены условные обозначения дефектов швов, обнаруживаемых при расшифровке рентгено-и гаммограмм: П - газовые включения (поры); Ш - шлаковые включения; Н - непровары; НС - непровар сплошной; Тп - трещины поперечные; Тпр - трещины продольные; Тр - трещины радиальные.

По характеру распределения дефекты делятся на следующие группы: А - отдельные дефекты; Б - цепочка дефектов; В - скопление дефектов. Например, запись на рентгенограмме длиной 100 мм- ПБ-1-15, Тп-4-1, Ш-0, Н-0 означает, что на участке шва 100 мм выявлены: цепочка пор размером 1 мм на протяжении 15 мм; одна поперечная трещина длиной 4 мм; шлаковых включений и непроваров не обнаружено.

Ультразвуковой метод контроля швов. Ультразвуковой метод контроля основан на способности высокочастотных (свыше 20 000 гц) колебаний, не воспринимаемых человеческим ухом, проникать в металл шва и отражаться от поверхности пор, трещин и других дефектов. Ультразвуковые колебания получают при помощи пластинки из кварца или титаната бария (пьезодатчика). Когда к такой пластинке подводят переменный ток высокой частоты (0,8-2,5 Мгц), то она начинает излучать пучки ультразвуковых колебаний, направленных под прямым углом к ее большим граням. Эта же пластинка при попадании на нее таких колебаний извне преобразует их в переменный электрический ток. При ультразвуковом контроле пьезодатчик посылает короткие импульсы упругих колебаний (длительностью 0,5-1 мксек), разделенные более продолжительными паузами (1-5 мксек).

Эти колебания проникают в металл и, если встречают на своем пути дефект, то отражаются от него и воспринимаются вновь той же (или второй) пластинкой пьезодатчика, вызывая отклонение луча на экране осциллографа. По времени от посылки до приема сигнала можно определять не только наличие, но и глубину залегания дефекта. Пьезодатчик помещен в призматическую искательную головку, называемую щупом. В процессе контроля щуп (или два щупа - посылающий и принимающий сигналы) перемещают вдоль шва, сообщая возвратно-поступательные движения.

Так отыскивают дефекты, расположенные в различных зонах шва. Схема ультразвукового дефектоскопа дана на рис. 200. На экране осциллографа 4 первоначальный сигнал дает пик а; обратный сигнал, отраженный от противоположной стороны листа, дает пик е. Если в шве имеется дефект, то часть пучка колебаний отражается от этого дефекта и дает на экране промежуточный пик б. Расстояние между пиками а и б позволяет определить глубину залегания дефекта.

На рис. 201 показаны внешний вид дефектоскопа и посылаемые им сигналы.

Промышленностью выпускаются ультразвуковые дефектоскопы УЗД-7, УЗД-НИИМ-5, ДУК-11ИМ и ДУК-13ИМ для выявления внутренних дефектов (трещин, пор, расслоений, непроваров и т. п.) площадью 2 мм 2 и более. При наличии такого дефекта загорается лампочка, появляется звук в наушниках телефона и возникает импульс на экране электроннолучевой трубки. Прибор имеет 14 искательных головок. Контролируемая толщина металла от 8 до 750 мм, частота 2,5 Мгц. Приборы ДУК-13ИМ на полупроводниках выпускаются в портативном исполнении.

Ультразвуковой метод может применяться при толщине металла свыше 3-4 мм. При толщине швов менее 8-10 мм выявление дефектов этим методом требует высокой квалификации контролера. Поэтому ультразвуковой контроль обычно используют для металла толщиной 12-15 мм и более; он особенно эффективен при толщине металла 30-50 мм и выше. Для лучшего прохождения колебаний через поверхность металла, прилегающую к шву, на нее наносят тонкий слой трансформаторного, турбинного или машинного масла или глицерина. В настоящее время ультразвуковой метод контроля является наиболее распространенным. С его помощью обычно выявляют местонахождение скрытого дефекта, а затем шов в данном месте просвечивают рентгеновскими или гамма-лучами для определения характера и размеров дефекта.

Магнитный метод. Этот способ контроля основан на изменении направления линий магнитного потока около места расположения дефекта, который они огибают вследствие меньшей магнитной проницаемости дефекта по сравнению с целым металлом (рис. 202). По способу определения места залегания дефекта существуют два способа контроля: порошковый (сухой или эмульсионный) и индукционный. При сухом способе порошок закиси-окиси железа (окалины) с частицами размером 5-10 мк наносят на поверхность шва с помощью сита или распылителя. При эмульсионном способе шов покрывают жидкой смесью (эмульсией) из указанного порошка, разведенного в керосине или трансформаторном масле. Затем изделие намагничивают с помощью постоянного или переменного сварочного тока до 200 а от преобразователя или трансформатора. Ток пропускают по обмотке, имеющей несколько витков, окружающих изделие. Под действием возникающего в изделии магнитного поля частицы железного порошка располагаются гуще около места с дефектом: непроваром, трещинами. Поскольку этим способом выявляются только дефекты, расположенные перпендикулярно направлению магнитных линий, то каждый участок нужно проверять дважды: один раз намагничивая его поперек, а второй - вдоль шва.

При индукционном способе применяют дефектоскоп системы К. К. Хренова и С. Т. Назарова (рис. 203). В тот момент, когда искателем 1 проводят над местом расположения дефекта, в нем индуктируется ток, который затем проходит в усилитель 2 и дает звуковой сигнал в телефоне 3; при этом одновременно загорается сигнальная лампа.

Магнитным методом можно выявить в сварных швах изделий из стали и чугуна с толщиной стенки от 6 до 25 мм мелкие внутренние трещины и непровары на глубине до 5-6 мм. Дефекты на большей глубине, а также поры и шлаковыключения этим методом не определяются. Магнитный метод (так же, как ультразвуковой) служит для предварительного определения наличия дефектов и места их залегания в сварных швах, затем эти участки просвечивают для установления размеров дефекта.

Магнитографический метод. Этот метод разработан и внедрен институтом ВНИИСТ для контроля сварных швов стальных трубопроводов. Он является усовершенствованной разновидностью магнитного метода.

Обнаруженные дефекты отмечаются на ферромагнитной ленте, подобной применяемой для звукозаписывающих установок. Вследствие неоднородности металла шва в месте расположения дефекта изменяется его магнитная проницаемость, поэтому меняется степень намагничивания ленты на этом участке.

Наличие дефекта, например трещины, увеличивает остаточную намагниченность ленты. Если затем ленту пропустить через аппарат для воспроизведения магнитной записи, а получаемые импульсы передавать на осциллограф, то по величине и форме отклонения луча на экране осциллографа можно судить о величине и характере дефекта шва. Магнитографический метод контроля достаточно прост и точен, им можно проверять швы, находящиеся в различных пространственных положениях, он безвреден для обслуживающего персонала. Этот метод может применяться для проверки стали толщиной не более 12 мм. На рис. 204 схематически показан этот способ контроля.

Для контроля сварных соединений трубопроводов и резервуаров применяются магнитографические дефектоскопы (например, типа МД-11). На экране дефектоскопа появляется изображение участков шва с дефектами. Прибор выявляет: макротрещины вдоль оси шва и под некоторым углом к ней в различных участках по сечению шва; непровары глубиной 4-5% от толщины металла; цепочки шлаковых включений и пор, а также отдельные шлаковые включения и газовые поры размером 4-5% от толщины металла.

Контроль с помощью электронно-оптического преобразователя. Схема устройства электронно-оптического преобразователя показана на рис. 205. Шов 1 просвечивается рентгеновскими лучами, которые, пройдя стеклянную стенку вакуумной трубки, вызывают свечение слоя 3 флуоресцирующего вещества, нанесенного на алюминиевый экран 2. На экране возникает изображение шва. Непосредственно на слой 3 флуоресцирующего вещества нанесен фотокатод 4. Свечение экрана выбивает электроны фотокатода, число которых в каждой его точке пропорционально яркости свечения экрана и интенсивности лучей, прошедших через шов. Выбрасываемые катодом электроны ускоряются высоким напряжением от внешнего источника питания и попадают на анод - флуоресцентный экран 5, вызывая его свечение яркостью в 1000 раз большей, чем у экрана 2.

На экране 5 возникает уменьшенное изображение шва, которое наблюдатель 7 рассматривает через оптическую увеличительную линзу 6. Этим методом можно просматривать все сварные швы, выявляя скрытые в них дефекты.

Контроль сварных швов просвечиванием рентгеновскими лучами с применением электронно-оптических преобразователей позволяет в несколько раз увеличить производительность этой операции и автоматизировать ее. На рис. 206 показана схема автоматизированного способа такого контроля с применением телевизионных экранов для наблюдения дефектов сварки. Максимальная чувствительность метода контроля при помощи электронно-оптических преобразователей достигается при определении дефектов в легких сплавах.

Испытание швов на межкристаллитную коррозию. На межкристаллитную коррозию испытывают только изделия, сварные соединения которых подвергаются действию агрессивных сред. Методы и порядок контроля регламентируются ГОСТ 6032-58.

Цветная дефектоскопия. Этот метод применяется для выявления поверхностных дефектов швов и околошовной зоны: трещин, пор, шлаковых включений, непроваров, выходящих на поверхность шва. При помощи цветной дефектоскопии можно обнаружить трещины глубиной свыше 0,1 мм и шириной до 0,001 мм на любых металлах, а также выявить участки, пораженные межкристаллитной и ножевой коррозией. Сварное соединение тщательно очищают и обезжиривают бензином Б-70 или ацетоном. После просушки наносят в два слоя краску, состава: керосин Т-1 или Т-2-500 см 3 , скипидар - 500 см 3 и анилиновый краситель «Судан-4» темно-красного цвета- 10 г. После высыхания краски контролируемый участок покрывают белой краской состава: каолина - 500 см 3 , воды - 1000 см 3 . Проникшая в дефекты красная краска адсорбируется слоем белого покрытия и дает на нем изображение дефекта, если после высыхания покрытия протереть шов ветошью,

Характерные дефекты деталей. Структурные параметры автомобиля и его агрегатов зависят от состояния сопряжений, деталей, которое характеризуется посадкой. Всякое нарушение посадки вызывается: изменением размеров и геометрической формы рабочих поверхностей; нарушением взаимного расположения рабочих поверхностей; механическими повреждениями, химикотепловыми повреждениями; изменением физико-химических свойств материала детали.

Изменение размеров и геометрической формы рабочих поверхностей деталей происходит в результате их изнашивания. Неравномерное изнашивание вызывает возникновение таких дефектов формы рабочих поверхностей, как овалость, конусность, бочкообразность, корсетность. Интенсивность изнашивания зависит от нагрузок на сопряженные детали, скорости перемещения трущихся поверхностей, температурного режима работы деталей, режима смазывания, степени агрессивности окружающей среды.

Нарушение взаимного расположения рабочих поверхностей проявляется в виде изменения расстояния между осями цилиндрических поверхностей, отклонений от параллельности или перпендикулярности осей и плоскостей, отклонений от соосности цилиндрических поверхностей. Причинами этих нарушений являются неравномерный износ рабочих поверхностей, внутренние напряжения, возникающие в деталях при их изготовлении и ремонте, остаточные деформации деталей вследствие воздействия нагрузок.

Взаимное расположение рабочих поверхностей наиболее часто нарушается у корпусных деталей. Это вызывает перекосы других деталей агрегата, ускоряющие процесс изнашивания.

Механические повреждения деталей - трещины, обломы, выкрашивание, риски и деформации (изгибы, скручивание, вмятины) возникают в результате перегрузок, ударов и усталости материала.

Трещины являются характерными для деталей, работающих в условиях циклических знакопеременных нагрузок. Наиболее часто они появляются на поверхности деталей в местах концентрации напряжений (например, у отверстий, в галтелях).

Обломы, характерные для литых деталей, и выкрашивание на поверхностях стальных цементованных деталей возникают в результате воздействия динамических ударных нагрузок и вследствие усталости металла.

Риски на рабочих поверхностях деталей появляются под действием абразивных частиц, загрязняющих смазку.

Деформациям подвержены детали из профильного проката и листового металла, валы и стержни, работающие в условиях динамических нагрузок.

Химико-тепловые повреждения - коробление, коррозия, нагар и накипь появляются при эксплуатации автомобиля в тяжелых условиях.

Коробление поверхностей деталей значительной длины обычно возникает при воздействии высоких температур.

Коррозия - результат химического и электрохимического воздействия окружающей окислительной и химически активной среды. Коррозия проявляется на поверхностях деталей в виде сплошных оксидных пленок или местных повреждений (пятен, раковин).

Нагар является результатом использования в системе охлаждения двигателя воды.

Накипь является результатом использования в системе охлаждения двигателя воды.

Изменение физико-механических свойств материалов выражается в снижении твердости и упругости деталей. Твердость деталей может снизится вследствие применения структуры материала при нагреве в процессе работы до высоких температур. Упругие свойства пружин и рессор снижаются вследствие усталости материала.

Предельные и допустимые размеры и износы деталей. Различают размеры рабочего чертежа, допустимые и предельные размеры и износы деталей.

Размерами рабочего чертежа называются размеры детали, указанные заводом-изготовителем в рабочих чертежах.

Допустимыми называются размеры и износы детали, при которых она может быть использована повторно без ремонта и будет безотказно работать до очередного плавного ремонта автомобиля (агрегата).

Предельными называются размеры и износы детали, при которых ее дальнейшее использование технически недопустимо или экономически нецелесообразно.

Изнашивание детали в различные периоды ее работы происходит не равномерно, а по определенным кривым.

Первый участок продолжительностью t 1 характеризует изнашивание детали в период приработки. В этот период шероховатость поверхностей детали, полученная при ее обработке, уменьшается, а интенсивность изнашивания снижается.

Второй участок продолжительностью t 2 соответствует периоду нормальной работы сопряжения, когда изнашивание происходит сравнительно медленно и равномерно.

Третий участок характеризует период резкого повышения интенсивности изнашивания поверхностей, когда мероприятия технического обслуживания препятствовать этому уже не могут. За время Т, прошедшее с начала эксплуатации, сопряжение достигает предельного состояния и требует ремонта. Зазор в сопряжении, соответствующий началу третьего участка кривой изнашивания, определяет значения предельных износов деталей.

Последовательность контроля деталей при дефектации. В первую очередь выполняют визуальный контроль деталей с целью обнаружения повреждений, видимых невооруженным глазом: крупных трещин, обломов, рисок, выкрашивания, коррозии, нагара и накипи. Затем детали проверяют на приспособлениях для обнаружения нарушений взаимного расположения рабочих поверхностей и физико-механических свойств материала, а также на отсутствие скрытых дефектов (невидимых трещин). В заключение контролируют размеры и геометрическую форму рабочих поверхностей деталей.

Контроль взаимного расположения рабочих поверхностей. Отклонение от соосности (смещение осей) отверстий проверяют с помощью оптических, пневматических и индикаторных приспособлений. Наибольшее применение при ремонте автомобилей нашли индикаторные приспособления. При проверке отклонения от соосности вращают оправку, а индикатор указывает значение радиального биения. Отклонение от соосности равно половине радиального биения.

Несоосность шеек валов контролируют замером их радиального биения с помощью индикаторов с установкой в центрах. Радиальное биение шеек определяется как разность наибольшего и наименьшего показаний индикатора за один оборот вала.

Отклонение от параллельности осей отверстий определяют разность |а 1 - a 2 | расстояний а 1 и а 2 между внутренними образующими контрольных оправок на длине L с помощью штихмасса или индикаторного нутромера.

Отклонение от перпендикулярности осей отверстий проверяют с помощью оправки с индикатором или калибра, измеряя зазоры Д 1 и Д 2 на длине L. В первом случае отклонение осей от перпендикулярности определяют как разность показаний индикатора в двух противоположных положениях, во втором - как разность зазоров |Д 1 - Д 2 |.

Отклонение от параллельности оси отверстия относительно плоскости проверяют на плите путем изменения индикатором отклонения размеров h 1 и h 2 на длине L. Разность этих отклонений соответствует отклонению от параллельности оси отверстия и плоскости.

Отклонение от перпендикулярности оси отверстия к плоскости определяют на диаметре D как разность показаний индикатора при вращении на оправке относительно оси отверстия или путем измерения зазоров в двух диаметрально противоположных точках по периферии калибра. Отклонение от перпендикулярности в этом случае равно разности результатов измерений |Д 1 -Д 2 | на диаметре D.

Контроль скрытых дефектов особенно необходим для ответственных деталей, от которых зависит безопасность движения автомобиля. Для контроля применяют методы опрессовки, красок, магнитный, люминесцентный и ультразвуковой.

Метод опрессовки применяют для выявления трещин в корпусных деталях (гидравлическое испытание) и проверки герметичности трубопроводов, топливных баков, шин (пневматическое испытание). Корпусную деталь устанавливаю для испытания на стенд, герметизируют крышками и заглушками наружные отверстия, после чего во внутренние полости детали насосом нагнетают воду до давления 0,3... 0,4 МПа. Подтекание воды показывает местонахождение трещины. При пневматическом испытании внутрь детали подают воздух давлением 0,05... 0,1 МПа и погружают ее в ванну с водой. Пузырьки выходящего воздуха указывают местонахождение трещины.

Методом красок пользуются для обнаружения трещин шириной не менее 20...30 мкм. Поверхность контролируемой детали обезжиривают и наносят на нее красную краску, разведенную керосином. Смыв красную краску растворителем, покрывают поверхность детали белой краской. Через несколько минут на белом фоне проявится красная краска, проникшая в трещину.

Магнитный метод применяют для контроля скрытых трещин в деталях из ферромагнитных материалов (стали, чугуна). Если деталь намагнитить и посыпать сухим ферромагнитным порошком или полить суспензией, то их частицы притягиваются к краям трещин, как к полюсам магнита. Ширина слоя порошка может в 100 раз превысить ширину трещины, что позволяет выявить ее.

Намагничивают детали на магнитных дефектоскопах. После контроля детали размагничивают, пропуская через соленоид, питаемый переменным током.

Люминесцентный метод применяют для обнаружения трещин шириной более 10 мкм в деталях, изготовленных из немагнитных материалов. Контролируемую деталь погружают на 10... 15 мин в ванн с флюоресцирующей жидкостью, способной светиться при воздействии на нее ультрафиолетового излучения. Затем деталь протирают и наносят на контролируемые поверхности тонкий слой порошка углекислого магния, талька или силикагеля. Порошок вытягивает флюоресцирующую жидкость из трещины на поверхность детали.

После этого, пользуясь люминесцентным дефектоскопом, деталь подвергают воздействию ультрафиолетового излучения. Порошок, пропитанный флюоресцирующей жидкостью, выявляет трещины детали в виде светящихся линий и пятен.

Ультразвуковой метод, отличающийся очень высокой чувствительностью, применяют для обнаружения в деталях внутренних трещин. Различают два способа ультразвуковой дефектоскопии - звуковой тени и импульсный.

Для способа звуковой тени характерно расположение генератора с излучателем ультразвуковых колебаний с одной стороны детали, а приемника - с другой. Если при перемещении дефектоскопа вдоль детали дефекта не оказывается, ультразвуковые волны достигают приемника, преобразуются в электрические импульсы и через усилитель попадают на индикатор, стрелка которого отклоняется. Если же на пути звуковых волн встречается дефект, то они отражаются. За дефектным участком детали образуется звуковая тень, и стрелка индикатора не отклоняется. Этот способ применим для контроля деталей небольшой толщины при возможности двустороннего доступа к ним.

Импульсный способ не имеет ограничений области применения и более распространен. Он состоит в том, что посланные излучателем импульсы, достигнув противоположной стороны детали, отражаются от нее и возвращаются к приемнику, в котором возникает слабый электрический ток. Сигналы проходят через усилитель и подаются в электронно-лучевую трубку. При пуске генератора импульсов одновременно с помощью блока развертки включается горизонтальная развертка электронно-лучевой трубки, представляющая собой ось времени.

Моменты срабатывания генератора сопровождаются начальными импульсами А. При наличии дефекта на экране появится импульс В. Характер и величину всплесков на экране расшифровывают по эталонным схемам импульсов. Расстояние, между импульсами А и В соответствует глубине залегания дефекта, а расстояние, между импульсами А и С - толщине детали.

Контроль размеров и формы рабочих поверхностей деталей позволяет оценивать их износ и решать вопрос о возможности их дальнейшего использования. При контроле размеров и формы детали используются как универсальные инструменты (штангенциркули, микрометры, индикаторные нутромеры, микрометрические штихмассы и др.), так и специальные инструменты и приспособления (калибры, скалки, пневматические приспособ-ления и др.).

В АРП нашли применение следующие методы обнаружения скрытых дефектов на деталях: красок, лаков, люминесцентный, намагничивание, ультразвуковой.

Метод опрессовки применяется для обнаружения дефектов в полых деталях. Опрессовку деталей ведут водой (гидравлический метод) и сжатым воздухом (пневматический метод).

а) Метод гидравлический применяется для выявления трещин в корпусных деталях (блок и головка цилиндров). Испытания ведут на спец. cтенде, который обеспечивает полную герметизацию детали, которую заполняют горячей водой под давлением 0,3-0,4 МПа. О наличии трещин судят по подтеканию воды.

б) Пневматический метод применяют для радиаторов, баков, трубопроводов и др. деталей. Полость детали заполняют сжатым воздухом под давлением и затем погружают в воду. О месте трещин судят по выходящим пузырькам воздуха.

Метод красок основан на свойствах жидких красок к взаимной диффузии. На обезжиренную поверхность детали наносят красную краску, разведенную керосином. Затем краску смывают растворителем и наносят слой белой краски. Через несколько секунд на белом фоне появляется рисунок трещины, увеличенный по ширине в несколько раз. Можно обнаружить трещины шириной 20 мкм.

Люминесцентный метод основан на свойстве некоторых веществ светиться при облучении их ультрафиолетовыми лучами. Деталь сначала погружают в ванну с флуоресцирующей жидкостью (смесью 50% керосина 25% бензина, 25% трансформаторного масла с добавкой флуоресцирующего красителя). Затем деталь промывают водой, просушивают теплым воздухом и припудривают порошком силикагеля, который вытягивает флуоресцирующую жидкость из трещины на поверхность детали. При облучении детали ультрафиолетовыми лучами границы трещины будут обнаружены свечением. Люминесцентные дефектоскопы применяют для обнаружения трещин более 10 мкм в деталях, изготовленных из немагнитных материалов.

Метод магнитной дефектоскопии широко применяется при обнаружении скрытых дефектов в автомобильных деталях, изготовленных из ферромагнитных материалов (сталь, чугун). Деталь сначала намагничивают, затем поливают суспензией, состоящей из 5% трансформаторного масла и керосина и мельчайшего порошка окиси железа. Магнитный порошок четко обрисует границы трещины, т.к. на краях трещины образуются магнитные полосы. Метод магнитной дефектоскопии обладает высокой производительностью и позволяет обнаруживать трещины шириной до 1 мкм.

Ультразвуковой метод основан на свойстве ультразвука проходить через металлические изделия и отражаться от границы двух сред, в том числе и от дефекта. Различают 2 метода ультразвуковой дефектоскопии: просвечивания и импульсионный.

Метод просвечивания основан на появлении звуковой тени за дефектом, при этом излучатель ультразвуковых колебаний располагается по одну сторону от дефекта, а приемник - по другую.

Импульсный метод основан на том, что ультразвуковые колебания отразившись от противоположной стороны детали, возвратятся обратно и на экране будет 2 всплеска. Если в детали есть дефект, то ультразвуковые колебания отразятся от него и на экране трубки проявится промежуточный всплеск.