Домашняя солнечная электростанция своими руками. Как собрать небольшую солнечную электростанцию. Электростанция на солнечных батареях своими руками

  • 08.07.2023

Каждый из вас уже слышал про солнечную энергию и знает, что с помощью её можно очень сильно экономить на электричестве. Возможно кто-то из вас в данный момент уже использует данный вид энергии, а кто-то наоборот хочет начать пользоваться, но не знает с чего начать. Возможно у вас возникает вопрос какой вариант солнечных батарей лучшее использовать. А для кого-то наоборот появляется вопрос как собрать солнечные батареи своим руками и чтобы она работала без перебоя. Все это вы сможете узнать из обучающего видео урока Романа Урсу «Солнечная электростанция своими руками».

Для того, чтобы собрать солнечную электростанцию у себя дома, для начало вам потребуется её приобрести на сайте https://www.raes.com.ua/. Для создание своей мини электростанции нам потребуются солнечные батареи, контролер зарядов аккумулятора, аккумулятор, инвертор и соединительные провода.

В этом обучающем видео уроке «Солнечная электростанция своим руками» вы сможете узнать простейшую схему подключения солнечных батарей. Многие из вас знаю, что солнечные батарей могут обеспечивать электроэнергией в условиях когда нет возможности подключить к обычной сети электропитания.

Перед покупкой солнечных батарей вы должны знать, что они бывают двух типов это монокристаллические и поликристаллические. Чем между собой отличаются данные панели? Сами панели отличаются между собой по технологии производства, так называемых солнечных элементов. Монокристаллические панели имеют меньшую площадь и при одинаковых мощностях с поликристаллической панелью. Поэтому в паспортную погоду монокристаллические панели работают менее эффективно.

Данный тип пластин дает возможность получить высокий КПД от 22 до 26 процентов. При этом сама панель всегда должна быть направленна к солнечному свету. Данный вид солнечных панелей очень хорошо дают энергий в солнечную погоду, а вот в пасмурный день она существенно снижается. В связи с чем у вас запас энергии получиться очень маленьким.

Данный вид батарей является самым оптимальным вариантом для южных регионов где много солнца. За счет преобразователей которые находятся на панели её ячейки всегда направлены в одну сторону.

Одним из главных отличий данной панели в том, что они даже при пасмурной погоде, они будут заряжать аккумуляторы. В поликристаллических панелях содержаться кристаллы кремния и они направлены в разные стороны. Это дает низкий КПД по сравнению с монокристаллическими панелями и составляет он от 16 до 18 процентов.

Еще одним отличием между двумя панелями является его срок службы. Монокристаллические панели имеют срок службы 40 лет, а поликристаллические 20 лет.

Существую другие варианты солнечных панелей такие как аморфные панели. Данный вариант используются путем напыления кремния и примесей в вакууме. КПД таких солнечных панелей является самым низким и составляет от 8 до 9 процентов.

Срок службы таких панелей составляет около от 3 до 10 лет. В этом случаи не рекомендуется установка данных панелей и далее мы не будем рассматривать их. Существуют другие варианты солнечных батарей, но об этом вы сможете узнать из других статей и видео уроков на нашем сайте.

Из выше изложенных солнечных панелей оставляем только два варианта — это монокристаллические и поликристаллические. Вы также можете посмотреть видео о сравнение этих солнечных панелей. Сможете узнать какой вариант более эффективный подходит для вас.

Технические характеристики

При выборе солнечной панели стоит также обратить на этикетку от производителя. В данной этикетке вы сможете увидеть обозначение в 17 — 18 вольт, что подразумевает на выходе 12 вольт. Такие панели очень хорошо адаптировать под аккумуляторы с выходом в 12 вольт. Это нужно для того, когда панель в пасмурную погоду производит меньше энергии и она смогла компенсировать падение напряжения.

Солнечные панели при изготовлении имеют уже подключенные диоды щетки которые защищают солнечные элементы от выхода из строя в момент когда панель перестает генерировать электроэнергию и становиться сама потребителем электроэнергии от аккумулятора. Именно диод конечно препятствует обратному протеканию электрического тока.

Перейдем к контролеру электрического тока заряда аккумулятора. Он управляет процессом заряда и препятствует чрезмерному заряду и разряду аккумуляторной батареи. Принцип работы контролера следующий:

Когда солнечная панель генерирует электрический ток, аккумулятор заряжается. Когда напряжение на клеймах 12 вольт аккумулятора достигает предельного значения 14 вольт, контролер отключает зарядку. Если на клеймах аккумулятора напряжение достигает нижней границы 11 вольт, то контролер отключит его от системы и тем самым предотвратит полный разряд аккумулятора. К самому контролеру можно подключить потребителей постоянного тока в 12 вольт, с помощью специальных клейм.

В самой системе такие батареи осуществляют функцию аккумулятора электроэнергии, тем самым они заряжают солнечную панель. Для подключения системы можно использовать любые свинцово-кислотные аккумуляторы и даже гелевые. В жилом помещении лучшее всего использовать аккумуляторы закрытого типа. Обычно используются автомобильные аккумуляторы 12 вольт.

Инвертор, он же преобразователь напряжения. Подключается к аккумулятору и получает на выходе постоянное напряжение. Обычно 12 вольт на выходе из инвертора получаем примерное напряжение 220 вольт к которому можно подключить бытовые приборы.

Данные инверторы очень популярны когда у вас могут возникнуть проблемы с электричеством. Допустим во время работы внезапно пропало электроэнергия и инвертор напряжения сможет его подаст с другого источника аккумулятора. И они очень хорошо работают со солнечными панелями, а купить инвертор напряжения недорого можно в специализированных интернет магазинах.

Монтаж солнечных панелей

Прежде чем начать монтаж солнечных панелей, рекомендуется использовать специальные кабеля. Такие кабеля имеют изоляционную защиту от ультрафиолетовых лучей. А само техническое подключение к солнечным панелям будет очень легко и просто.

Для начало нам потребуется подключить солнечную панель к контролеру, а подключать стоит плюс к плюсу, а минус к минусу. На самом контролере также имеются нарисованные значки куда следует подключать ваши солнечные панели. Если вы будете подключать несколько солнечных панелей, то их можно подключить параллельно.

При помощи медного кабеля подключаем аккумулятор к контролеру, при этом стоит соединять их плюс к плюсу, а минус к минусу. Следующим шагом для подключения используем инвертор к аккумулятору. При этом стоит соблюдать полярность, чтобы он не вышел из строя и подключается плюс к плюсу, а минус к минусу.

Расположение солнечных панелей

Сами солнечные панели стоит расположить так, чтобы они находились не на затемненных участках. Желательно, чтобы все панели были направленны на юг и стояли под углов в 45 градусов к горизонту. Возможно установить солнечные панели на автоматические поворотные устройства, которые постепенно будут поворачивать к солнцу в течение дня.

Солнечная панель под воздействием солнечных лучей вырабатывает напряжение, которое поступает на контролер. В свою очередь контролер дает заряд на аккумулятор, который подключен к инвертору. На инвертор поступает постоянный ток в 12 вольт, на выходе из инвертора мы получаем переменный ток в 220 вольт. На выходе из инвертора подключаются потребители энергии, все возможные электрические бытовые приборы.

Данные солнечные панели будут очень полезны тем кто решил сэкономить на электроэнергии на своих дачных участках и загородных домах. Надеемся вам понравилась данная инструкция солнечная электростанция своими руками и вы готовы её создать у себя дома. Поделитесь данным видео уроком со своими друзьями в социальных сетях.

Установить на крыше солнечные фотоэлементы, которые за день зарядят аккумуляторы, а вечером пользоваться дармовой энергией - это путь к полной независимости от государственного электроснабжения, цен на газ и так далее.

Преимуществ у домашней солнечной электростанции предостаточно:

  1. Простота установки и подключения. Не надо строить высокую башню, как для ветровой электростанции, бетонировать фундамент.
  2. Для строительства не нужны большие площади. Многие укладывают светоактивные листы на крышу частного дома.
  3. Простой и нематериалозатратный монтаж сильно сокращает денежные расходы.
  4. Возможно, по мере накопления средств, добавлять к имеющимся панелям новые, увеличивая мощность установки в целом, чего нельзя сделать для ветровой станции.
  5. Отсутствуют вращающиеся части, которые нужно смазывать, подтягивать. Профилактический осмотр солнечных элементов специалисты рекомендуют проводить раз в 1–2 года.
  6. Может эксплуатироваться без капитального ремонта до 25 лет.
  7. Все компоненты электроустановки подвозятся к месту установки в собранном виде.
  8. Солнечные станции бесшумны, безопасны для людей, не мешают птицам. Они самые экологически безопасные среди зелёных технологий.

Перейдем к недостаткам:

  1. Ограничено применение в некоторых регионах количеством солнечных дней.
  2. Имеют низкий КПД и слабую мощность, особенно в хмурые зимние дни, по сравнению с другими источниками энергии.

Подбор PV-элементов

Черные фотоэлектрические панели, photovoltaic PV-элементы, те, которые в диковинку видеть на крышах российских домов, сплошь покрывают любые строения в Японии. А японцы очень практичны и не будут городить то, от чего мало проку. Главная задача - правильно выбрать тип солнечного элемента.

В продаже представлены четыре типа фотоэлектрических элементов:

  1. монокристаллические;
  2. поликристаллические;
  3. аморфные;
  4. тонкоплёночные.
  • Монокристаллические делают из отполированного листа кремния. Примерно 1 кВт энергии от таких изделий можно получить с площади 7 квадратных метров.
  • Поликристаллические кремниевые менее производительные, чем первые. Чтобы получить 1 кВт уже потребуется занять площадь более 8 кв. метров.
  • Аморфные наиболее экономичны при изготовлении: аморфный кремний наносится тонким слоем на подложку и расходуется гораздо меньше. Эти батареи имеют самую низкую мощность и относительно дешевы.
  • Тонкопленочные имеют наибольший КПД в 25 процентов, по сравнению с показателем 12–17 у первых трёх типов. Могут вырабатывать энергию при слабом освещении, даже зимой в облачную погоду. Производят такие пленки на нескольких американских заводах для промышленного использования. Стоят они очень дорого.

Оптимальным вариантом для южной полосы: Одесса – Ростов на Дону – Астрахань – побережье северное Каспийского моря являются монокристаллические элементы. Можно собрать эффективную солнечную установку мощностью до 500 кВт/час за месяц.

Другие компоненты солнечной электростанции

  1. Инвертор , преобразующий постоянный ток в переменный. Фотоэлектрические элементы вырабатывают постоянный ток низкого напряжения, а большинство бытовых приборов работает на переменном высоком напряжении.
  2. Аккумуляторы , сохраняющие энергию для ночного времени.
  3. Контроллер зарядное устройство, не допускающее перезарядки аккумуляторов и защищающее от утечки обратного тока на PV-элементы ночью.
  4. Автоматическое реле , которое при полной разрядке аккумуляторов переключает питание домашних приборов к общей сети.
  5. Электросчетчик , остается для контроля потребленной энергии.

Цена солнечной установки

Покупать солнечную электростанцию под ключ, к примеру, СЭС-5 удобно тем, что специалисты компании-производителя сами всё привезут, соберут, подключат, проверят и гарантию дадут.


Стоимость СЭС-5, вместе с монтажом составляет 8250, 9100 долларов. Такая система замечательна тем, что излишки выработанной энергии можно продать в общую сеть по зеленому тарифу. Установка состоит из 25 фотоэлектрических элементов, средней производительностью за месяц – 521 кВт/час. Есть установки равной мощности по цене 15000 долларов. Если в вашем доме все бытовые приборы расходуют за сутки около 10 кВт/час, то этой электростанции вполне достаточно, чтобы всё светилось, крутилось. Кроме отопления, конечно.

Обогрев дома зимой такая электростанция не потянет. Надо увеличить количество солнечных элементов и аккумуляторов как минимум вдвое, соответственно и цена возрастет вдвое.

Если же комплектовать домашнюю электростанцию самостоятельно, то собранная установка обойдется в 8032 доллара. Из расчета, если каждый компонент будет стоить:

  • PV-элементы Yabang Solar YBP 250-60 (250 Вт, 24 В), 20 штук - 4250 долларов;
  • контроллер (зарядное устройство) - 25 долларов;
  • аккумуляторы SIAP PzS 4 APH 420 (2 В, 420 А), 24 шт. - 3624 доллара;
  • инвертор - 69 долларов;
  • автоматическое реле - 33 доллара;
  • электросчетчик - 31 доллар.

Итого: если умудрится и электростанцию для дома, то можно сэкономить лишь 218 долларов.

Солнечная батарея собранная своими руками Шаг 14: Веб-приложение и интерфейс телефона – Самонаводящиеся солнечные панели с управлением от мобильника Самонаводящиеся солнечные панели с управлением от мобильника – Этап 13: настройка модуля Electric Imp для HTTP соединения

Уже не одно десятилетие человечество ищет альтернативные источники энергии, способные хотя бы частично заменить существующие. И самыми перспективными из всех на сегодняшний день представляются два: ветро‑ и солнечная энергетика.

Правда, ни тот ни другой не могут предоставить непрерывного производства. Это связано с непостоянством розы ветров и суточно‑погодно‑сезонными колебаниями интенсивности солнечного потока.

Сегодняшняя энергетика предлагает три основных метода получения электрической энергии, но все они тем или иным образом вредны для окружающей среды:

  • Топливная электроэнергетика — самая экологически грязная, сопровождается значительными выбросами в атмосферу углекислого газа, сажи и бесполезной теплоты, вызывая сокращение озонового слоя. Добыча топливных ресурсов для нее также наносит значительный вред природе.
  • Гидроэнергетика связана с очень значительными ландшафтными изменениями, затоплением полезных земель, причиняет ущерб рыбным ресурсам.
  • Атомная энергетика — самая экологически чистая из трёх, но требует очень значительных расходов на поддержание безопасности. Любая авария может быть связана с нанесением непоправимого долголетнего вреда природе. К тому же требует специальных мер по утилизации отходов использованного топлива.

Строго говоря, получить электроэнергию от солнечного излучения можно несколькими способами, но большинство из них используют промежуточное её преобразование в механическую, вращающую вал генератора и только затем в электрическую.

Такие электростанции существуют, они используют в работе двигатели внешнего сгорания Стирлинга, имеют неплохой КПД, но у них есть и существенный недостаток: чтобы собрать как можно больше энергии солнечного излучения, требуется изготовление огромных параболических зеркал с системами слежения за положением солнца.

Надо сказать, что существуют решения, позволяющие улучшить ситуацию, но все они достаточно дорогостоящие.

Есть методы, дающие возможность прямого преобразования энергии света в электрический ток. И хотя явление фотоэффекта в полупроводнике селене было открыто уже в 1876 году, но только в 1953 году, с изобретением кремниевого фотоэлемента, появилась реальная возможность создания солнечных батарей для получения электроэнергии.

В это время уже появляется теория, позволившая объяснить свойства полупроводников, и создать практическую технологию их промышленного производства. К сегодняшнему дню это вылилось в настоящую полупроводниковую революцию.

Работа солнечной батареи основана на явлении фотоэффекта полупроводникового p-n перехода, по сути представляющего собой обычный кремниевый диод. На его выводах при освещении возникает фото‑эдс величиной 0,5~0,55 В.

При использовании электрических генераторов и батарей необходимо учитывать различия, которые существуют между . Подключая трехфазный электродвигатель в соответствующую сеть, можно в три раза увеличить его выходную мощность.

Следуя определенным рекомендациям, с минимальными затратами по ресурсам и времени можно изготовить силовую часть высокочастотного импульсного преобразователя для бытовых нужд. Изучить структурные и принципиальные схемы таких блоков питания можно .

Конструктивно каждый элемент солнечной батареи выполнен в виде кремниевой пластины площадью в несколько см 2 , на которой сформировано множество соединённых в единую цепь таких фотодиодов. Каждая такая пластина является отдельным модулем, дающим при солнечном освещении определённое напряжение и ток.

Соединяя такие модули в батарею и комбинируя параллельно‑последовательное их подключение, можно получить широкий диапазон значений выходной мощности.

Основные недостатки солнечных батарей:

  • Большая неравномерность и нерегулярность энергоотдачи в зависимости от погоды, и сезонной высоты солнца.
  • Ограничение мощности всей батареи, если затенена хотя бы одна её часть.
  • Зависимость от направления на солнце в различное время суток. Для максимально эффективного использования батареи нужно обеспечивать её постоянную направленность на солнце.
  • В связи с вышесказанным, необходимость аккумулирования энергии. Наибольшее потребление энергии приходится на то время, когда выработка её минимальна.
  • Большая площадь, требующаяся для конструкции достаточной мощности.
  • Хрупкость конструкции батареи, необходимость постоянной очистки её поверхности от загрязнений, снега и т. п.
  • Модули солнечной батареи работают наиболее эффективно при 25°C. Во время работы же они нагреваются солнцем до значительно более высокой температуры, сильно снижающей их эффективность. Чтобы поддерживать КПД на оптимальном уровне, необходимо обеспечивать охлаждение батареи.

Следует заметить, что постоянно появляются разработки солнечных элементов, использующих новейшие материалы и технологии. Это позволяет постепенно устранять недостатки, присущие солнечным батареям или уменьшать их влияние. Так, КПД новейших элементов, использующих органические и полимерные модули, достигает уже 35% и есть ожидания достижения 90%, а это делает возможным при тех же размерах батареи получить много бòльшую мощность, либо, сохранив энергоотдачу, значительно уменьшить габариты батареи.

Кстати, средний КПД автомобильного двигателя не превышает 35%, что позволяет говорить о достаточно серьёзной эффективности солнечных панелей.

Появляются разработки элементов на основе нанотехнологий, одинаково эффективно работающих под разными углами падающего света, что избавляет от необходимости их позиционирования.

Таким образом, уже сегодня можно говорить о преимуществах солнечных батарей по сравнению с другими источниками энергии:

  • Отсутствие механических преобразований энергии и движущихся частей.
  • Минимальные расходы на эксплуатацию.
  • Долговечность 30~50 лет.
  • Тишина при работе, отсутствие вредных выбросов. Экологичность.
  • Мобильность. Батарея для питания ноутбука и зарядки аккумулятора для светодиодного фонарика вполне поместится в небольшом рюкзаке.
  • Независимость от наличия постоянных источников тока. Возможность подзарядки аккумуляторов современных гаджетов в полевых условиях.
  • Нетребовательность к внешним факторам. Солнечные элементы можно разместить в любом месте, на любом ландшафте, лишь бы они достаточно освещались солнечным светом.

В приэкваториальных районах Земли средний поток солнечной энергии составляет в среднем 1,9 кВт/м 2 . В средней полосе России он находится в пределах 0,7~1,0 кВт/м 2 . КПД классического кремниевого фотоэлемента не превышает 13%.

Как показывают опытные данные, если прямоугольную пластину направить своей плоскостью на юг, в точку солнечного максимума, то за 12‑часовой солнечный день она получит не более 42% суммарного светового потока из‑за изменения угла его падения.

Это означает, что при среднем солнечном потоке 1 кВт/м 2 , 13% КПД батареи и её суммарной эффективности 42% удастся получить за 12 часов не более 1000 x 12 x 0,13 x 0,42 = 622,2 Втч, или 0,6 кВтч за день с 1 м 2 . Это при условии полного солнечного дня, в облачную погоду — значительно меньше, а в зимние месяцы эту величину нужно разделить ещё на 3.

Учитывая потери на преобразование напряжения, схему автоматики, обеспечивающую оптимальный зарядный ток аккумуляторов и предохраняющую их от перезаряда, и прочие элементы можно принять за основу цифру 0,5 кВтч/м 2 . Этой энергией можно в течение 12 часов поддерживать ток заряда аккумулятора 3 А при напряжении 13,8 В.

То есть для заряда полностью разряженной автомобильной батареи ёмкостью 60 Ач потребуется солнечная панель в 2 м 2 , а для 50 Ач — примерно 1,5 м 2 .

Для того чтобы получить такую мощность можно приобрести готовые панели, выпускающиеся в диапазоне электрических мощностей 10~300 Вт. Например, одна 100 Вт панель за 12‑ти часовой световой день с учётом коэффициента 42% как раз обеспечит 0,5 кВтч.

Такая панель китайского производства из монокристаллического кремния с очень неплохими характеристиками стоит сейчас на рынке около 6400 р. Менее эффективная на открытом солнце, но имеющая лучшую отдачу в пасмурную погоду поликристаллическая — 5000 р.

При наличии определённых навыков в монтаже и пайке радиоэлектронной аппаратуры можно попробовать собрать подобную солнечную батарею и самому. При этом не стоит рассчитывать на очень большой выигрыш в цене, кроме того, готовые панели имеют заводское качество как самих элементов, так и их сборки.

Но продажа таких панелей организована далеко не везде, а их транспортировка требует очень жёстких условий и обойдётся достаточно дорого. Кроме того, при самостоятельном изготовлении появляется возможность, начав с малого, постепенно добавлять модули и наращивать выходную мощность.

Подбор материалов для создания панели

В китайских интернет‑магазинах, а также на аукционе eBay предлагается широчайший выбор элементов для самостоятельного изготовления солнечных батарей с любыми параметрами.

Ещё в недалёком прошлом самодельщики приобретали пластины, отбракованные при производстве, имеющие сколы или другие дефекты, но существенно более дешёвые. Они вполне работоспособны, но имеют немного пониженную отдачу по мощности. Учитывая постоянное снижение цен, сейчас это уже вряд ли целесообразно. Ведь теряя в среднем 10% мощности, мы теряем и в эффективной площади панели. Да и внешний вид батареи, состоящей из пластин с отколотыми кусочками выглядит довольно кустарно.

Можно приобрести такие модули и в российских онлайн‑магазинах, например, molotok.ru предлагает поликристаллические элементы с рабочими параметрами при световом потоке 1,0 кВт/м 2:

  • Напряжение: холостого хода — 0,55 В, рабочее — 0,5 В.
  • Ток: КЗ — 1,5 А, рабочий — 1,2 А.
  • Рабочая мощность — 0,62 Вт.
  • Габариты — 52х77 мм.
  • Цена 29 р.

Совет: Надо учитывать, что элементы очень хрупкие и при транспортировке часть из них может быть повреждена, поэтому при заказе следует предусмотреть некоторый запас по их количеству.

Изготовление солнечной батареи для дома своими руками

Для изготовления солнечной панели нам понадобится подходящая рама, которую можно сделать самостоятельно или подобрать готовую. Из материалов для нее лучше всего использовать дюралюминий, он не подвержен коррозии, не боится сырости, долговечен. При соответствующей обработке и покраске для защиты от атмосферных осадков подойдёт и стальная, и даже деревянная.

Совет: Не стоит делать панель очень больших размеров: она будет неудобна в монтаже элементов, установке и обслуживании. К тому же маленькие панели имеют низкую парусность, их можно удобнее разместить под требуемыми углами.

Рассчитываем комплектующие

Определимся с размерами нашей рамы. Для зарядки 12-ти вольтового кислотного аккумулятора требуется рабочее напряжение не ниже 13,8 В. Примем за основу 15 В. Для этого нам придётся соединить последовательно 15 В / 0,5 В = 30 элементов.

Совет: Выход солнечной панели следует подключать к аккумулятору через защитный диод во избежание его саморазряда в темное время суток через солнечные элементы. Так что на выходе нашей панели будет: 15 В – 0,7 В = 14,3 В.

Чтобы получить зарядный ток 3,6 А, нам необходимо соединить в параллель три таких цепочки, или 30 x 3 = 90 элементов. Это будет нам стоить 90 x 29 р. = 2610 р.

Совет: Элементы солнечной панели соединяются параллельно‑последовательно. Необходимо соблюдать равенство количества элементов в каждой последовательной цепочке.

Таким током мы можем обеспечить стандартный режим заряда для полностью разряженного аккумулятора ёмкостью 3,6 x 10 = 36 Ач.

Реально эта цифра будет меньше из‑за неравномерности солнечного освещения в течение дня. Таким образом, для заряда стандартной автомобильной батареи 60 Ач, нам нужно будет соединить параллельно две таких панели.

Эта панель может нам обеспечить электрическую мощность 90 x 0,62 Вт ≈ 56 Вт.

Или в течение 12‑часового солнечного дня с учётом поправочного коэффициента 42% 56 x 12 x 0,42 ≈ 0,28 кВтч.

Разместим наши элементы в 6 рядов по 15 штук. Для установки всех элементов нам потребуется поверхность:

  • Длина — 15 x 52 = 780 мм.
  • Ширина — 77 x 6 = 462 мм.

Для свободного размещения всех пластин примем габариты нашей рамы: 900×500 мм.

Совет: Если есть готовые рамы с другими габаритами, можно пересчитать количество элементов в соответствии с приведёнными выше намётками, подобрать элементы других типоразмеров, попробовать разместить их, комбинируя длину и ширину рядов.

Также нам потребуются:

  • Паяльник электрический 40 Вт.
  • Припой, канифоль.
  • Монтажный провод.
  • Силиконовый герметик.
  • Двусторонний скотч.

Этапы изготовления

Для монтажа панели необходимо подготовить ровное рабочее место достаточной площади с удобным подходом со всех сторон. Сами пластины элементов лучше разместить отдельно в стороне, где они будут защищены от случайных ударов и падений. Брать их следует аккуратно, по одной.

Устройства защитного выключения повышают безопасность домашней электросети, снижая вероятность поражения электричеством и возникновения пожаров. Детальное ознакомление с характерными особенностями разных видов выключателей дифференциального тока подскажет, для квартиры и дома.

При эксплуатации электросчетчика возникают ситуации, когда его надо заменить и заново подключить — об этом можно прочитать .

Обычно для изготовления панели используют способ приклеивания предварительно распаянных в единую цепь пластин элементов на плоскую основу‑подложку. Мы предлагаем другой вариант:

  1. Вставляем в раму, хорошо закрепляем и герметизируем по краям стекло или кусок плексигласа.
  2. Раскладываем на нем в соответствующем порядке, приклеивая их двусторонним скотчем, пластины элементов: рабочей стороной к стеклу, выводами для пайки — к задней стороне рамы.
  3. Положив раму на стол стеклом вниз, мы сможем удобно распаивать выводы элементов. Выполняем электрический монтаж в соответствии с выбранной принципиальной схемой включения.
  4. Склеиваем окончательно пластины с задней стороны скотчем.
  5. Подкладываем какую‑либо демпфирующую прокладку: листовую резину, картон, ДВП и т. п.
  6. Вставляем в раму заднюю стенку и герметизируем её.

При желании вместо задней стенки можно залить раму сзади каким‑нибудь компаундом, например, эпоксидкой. Правда, это уже исключит возможность разборки и ремонта панели.

Конечно, одной батареи в 50 Вт не хватит для обеспечения энергией даже небольшого домика. Но с её помощью уже можно реализовать в нем освещение, используя современные светодиодные светильники.

Для комфортного существования городского жителя сейчас в сутки требуется не менее 4 кВтч электроэнергии. Для семьи — соответственно количеству её членов.

Следовательно, солнечная батарея частного дома для семьи из трёх человек должна обеспечивать 12 кВтч. Если предполагается электроснабжение жилища только от солнечной энергии нам нужна будет солнечная батарея площадью, не менее 12 кВтч / 0,6 кВтч/м 2 = 20 м 2 .

Эту энергию необходимо запасти в аккумуляторных батареях, ёмкостью 12 кВтч / 12 В = 1000 Ач, или примерно 16 батарей по 60 Ач.

Для нормальной работы аккумуляторной батареи с солнечной панелью и её защиты потребуется контроллер заряда.

Чтобы преобразовать 12 В постоянного тока в 220 В переменного, нужен будет инвертор. Хотя сейчас на рынке уже в достаточном количестве представлено электрооборудование на напряжения 12 или 24 В.

Совет: В низковольтных сетях электроснабжения действуют токи значительно более высоких значений, поэтому для выполнения проводки к мощному оборудованию следует выбирать провод соответствующего сечения. Проводка для сетей с инвертором выполняется по обычной схеме 220 В.

Делаем выводы

При условии аккумулирования и рационального использования энергии, уже сегодня нетрадиционные виды электроэнергетики начинают создавать солидную прибавку в общем объёме её выработки. Можно даже утверждать, что они постепенно становятся традиционными.

Учитывая значительно снизившийся в последнее время уровень энергопотребления современной бытовой техники, применение энергосберегающих осветительных приборов и значительно увеличившийся КПД солнечных батарей новых технологий, можно сказать, что уже сейчас они способны обеспечивать электроэнергией небольшой частный дом в южных странах с большим количество солнечных дней в году.

В России же они вполне могут применяться, как резервные или дополнительные источники энергии в комбинированных системах электроснабжения, а если эффективность их удастся повысить хотя бы до 70%, то вполне реально будет и их использование в качестве основных поставщиков электроэнергии.

Видео о том, как изготовить прибор для сбора солнечной энергии самому

Купить гелиоустановку для дома или же для дачи не составляет труда. Но цена подобных систем нередко оказывается чрезмерно завышенной. А между тем их изготовление своими руками – вовсе не такой невозможный процесс, как кажется на первый взгляд. Достаточно подобрать нужные компоненты и произвести соответствующие расчеты. Разумеется, также необходимы определенные навыки работы с электрооборудованием (для подключения аккумуляторов, инверторов и т.д.).

Что для этого нужно?

Самодельная солнечная электростанция должна состоять из нескольких главных частей. Все они вполне доступны по цене и продаются в специализированных магазинах.

Фотомодули

Прежде всего необходимы сами фотоэлементы. Их количество и площадь определяются на основе норм энергопотребления и среднесолнечной географической активности. Каждый модуль можно собрать и самостоятельно, купив только кремниевые фотоячейки. Также можно приобрести уже готовые гелиоблоки, если их параметры удовлетворяют всем требованиям.

Аккумуляторные батареи

Их наличие необходимо для предотвращения перебоев энергоснабжения. Если солнечная электростанция не объединена с другими энергоисточниками, то именно данные аккумуляторы будут поддерживать жизнеобеспечение дома в пасмурные дни.

Контроллеры заряда

Представляют собой электронные устройства, предназначенные для предохранения аккумуляторов от чрезмерной зарядки/разрядки. При полной зарядке батареи они снижают вырабатываемый солнечным модулем ток до величины, позволяющей компенсировать саморазряд. В случае же критической разрядки эти контроллеры прерывают подачу электроэнергии на бытовые устройства. Если собрать солнечную электростанцию самостоятельно и оснастить ее подобными приборами, то срок службы установки значительно увеличится.

Инверторы

Это устройства, преобразующие постоянный ток от гелиоячеек в переменный, от которого «запитано» все бытовое оборудование. Кром того, инверторы производят электричество лучшего качества, чем то, которое поступает из местных энергосетей. Как правило, изготовление солнечной электростанции своими руками подразумевает использование синусоидальных моделей. Дело в том, что такие инверторы менее дороги и идеально подходят именно для домашних сетей. Еще одно назначение этих приборов – роль своеобразного «буфера» между домашней энергосистемой и коммунальной, что позволяет передавать избыток сгенерированного электричества в общую сеть.

Кабели

Ни одна солнечная электростанция не обходится без специальных коммутационных кабелей. Для минимизации энергопотерь кабели между элементами системы должны пролегать по наиболее коротким путям и иметь соответствующее сечение (не менее 4-6мм2). Внешние кабели должны быть устойчивы ко всем погодным явлениям.

Особенности компоновки

Чтобы созданная вами солнечная электростанция работала максимально эффективно, она должна быть спроектирована по определенной схеме. Вкратце эту схему можно изобразить таким образом. Постоянный ток от фотоэлементов подается на контроллер заряда. Как правило, при этом он проходит через специальную соединительную коробку. После контроллера ток попадает на аккумуляторную батарею, и часть его используется для накопления энергии. За аккумуляторной батареей располагается инвертор, который преобразует этот постоянный ток в переменный. Далее энергопоток распределяется на бытовые нагрузки. Причем лучше всего использовать для каждой группы нагрузок свой инвертор.

Монтаж домашней солнечной станции

В первую очередь необходимо расположить на крыше дома солнечные модули. Нужно помнить, что они должны располагаться под прямым углом к падающим лучам, а отклонение не должно превышать 15°. Причем если солнечная электростанция будет функционировать круглый год, то батареи надо поместить под углом +15° относительно географической широты. Для летней эксплуатации лучше придерживаться угла -15°.

Как правило, гелиомодули устанавливаются рядами на наклонных крышах, один ряд над другим. Такой монтаж подразумевает необходимость выдерживания расстояния между рядами. Это необходимо, чтобы модули не затеняли друг друга. Данное расстояние должно составлять минимум 1,7 высоты самих фотобатарей.

Все дополнительное оборудование (инверторы, аккумуляторы, зарядные контроллеры и т.д.) лучше располагать в отдельном техническом помещении. В этом случае уменьшится длина коммутационных кабелей (а значит, и энергопотери), и собранная система будет работать эффективнее.

Приветствую всех читателей, хочу рассказать о свой солнечной электростанции, мощность которой доходит до киловатта в час. Сейчас провел полную модернизацию всей системы. Сначала у меня было всего четыре солнечные панели, две штуки Краснодарские по 75ватт*ч, и две собранные из элементов купленных на ибей.

Контроллер использовал простой дешевый ШИМ на 24вольта 20А. Вся солнечная электростанция выдавала до 230ватт*ч. Теперь установил 6 панелей 50ватт*ч и 2 панели 100ватт*ч. Общая мощность этих панелей составила 500 ватт*ч. Панели кстати производства Германия. Соединял панели на 24вольта, по две параллельно и потом последовательно. Напряжение рабочее 39В.

Сегодня в час дня провел первые результаты тестов, и получил почти расчетную мощность, не смотря на легкую дымку в небе. На фото панели в верхнем ряду 2шт слева немецкие по 100ватт*ч, а справа Краснодарские по 75ватт*ч, но они не подключены, так как имеют напряжение рабочей точки ниже остальных на 2 вольта.

Показания контроллера, видна зафиксированная мощность 490 ватт*ч.

>

Контроллер заряжает шесть аккумуляторов АГМ 120А*ч, я их раньше использовал не своем электромобиле. Соединил последовательно по два на 24 вольта и в параллель. От аккумуляторов энергия отбирается по средствам двух инверторов ч чистой синусоидой. Один питает только освещение по дому и прилегающих строениях, его мощность 500ватт*ч. Второй по мощнее, используется для питания мощных потребителей, он на 1,5аВт*ч с кратковременной нагрузкой до 3кВт*ч на 10сек.

Портативная солнечная батарея своими руками.

Так-же вот еще фотки солнечной переносной электростанции, сделанной для одного из знакомых. Мощность панелей 100ватт, можно перекоммутировать на зарядку аккумуляторов 12/24 вольта так-как установлен соответствующий контроллер. Но контроллер обычный, поэтому ток максимальный 6А. Ну в общем получилось неплохо, хотя очень просто.

>

>

>

>

Вернемся к основной электростанции. Вот закончил монтаж солнечных панелей на 1кВт. Так-же куплен в Китае инвертор на 3.5кВт длительной мощности, чистая синусоида. Зарядом аккумуляторов занят MPPT контроллер TS-MPPT-45. Общая емкость аккумуляторов 7кВт*ч.

>

Первые данные, показания зафиксировал где то днем, несмотря на большую температуру на улице и легкую дымку на небе электростанция выдавала 900 ватт, результат оправдал все надежды. Зимой думаю мощность побольше будет так-как у нас зимой небо чище и и низкая температура не позволит солнечным панелям перегреваться.

>

Электростанция в общем пока работает отлично, хотя дом и подключен к центральной электросети, но освещение в доме сейчас полностью питается от солнечной энергии. Еще вот недавно на сутки вырубали электричество, какие-то ремонтные работы, вокруг ни огонька, у одного у меня свет во всех окнах горел весь вечер. Кстати отдача от панелей не только 1-2 часа в день полная, а практически все светлое время суток, даже при косвенном падении солнца панели дают мощность больше 50% от возможной. Статья написана по материалам >>источник