Каким образом сок поднимается вверх по дереву? Движение воды по растению Отрицательное давление в стволе дерева

  • 26.07.2023

Ксилема цветковых растений содержит два типа проводящих воду структур - трахеиды и сосуды. В статье мы уже говорили о том, как выглядят эти структуры в световом микроскопе, а также на микрофотографиях, полученных с помощью сканирующего электронного микроскопа. Строение вторичной ксилемы (древесины) рассматривается в статье. Ксилема и флоэма образуют проводящую ткань высших, или сосудистых, растений. Эта ткань состоит из так называемых проводящих пучков, строение и распределение которых в стеблях двудольных растений с первичным строением показано на рисунке.

То, что вода поднимается именно по ксилеме , нетрудно продемонстрировать, погрузив побег срезанным концом в разбавленный водный раствор красителя, например эозина. Подкрашенная жидкость, распространившись вверх по стеблю, заполнит сеть пронизывающих листья жилок. Если затем сделать тонкие срезы и рассмотреть их в световом микроскопе, то окажется, что краситель находится в ксилеме.

Более эффектное доказательство подъема воды по ксилеме дают опыты с «кольцеванием». Такие опыты проводили задолго до того, как стали применяться радиоактивные изотопы, позволяющие очень легко проследить путь веществ в живом организме. В одном из вариантов опыта с одревесневшего стебля снимают узкое кольцо коры вместе с лубом, т. е. флоэмой. Довольно долго после этого находящиеся выше вырезанного кольца побеги продолжают расти нормально: следовательно, такое кольцевание не влияет на подъем воды по стеблю. Однако, если, приподняв лоскут коры, вырезать из-под него сегмент древесины, т. е. ксилемы, то растение быстро завянет. Таким образом, вода движется в побеги из почвы именно по этой проводящей ткани.

Любая теория, объясняющая транспорт воды по ксилеме , не может не учитывать следующие наблюдения.

1. Анатомические элементы ксилемы - тонкие мертвые трубки, диаметр которых варьирует от 0,01 мм в «летней» древесине до 0,2 мм в «весенней» древесине.
2. Большие количества воды движутся по ксилеме с относительно высокой скоростью: у высоких деревьев она составляет до 8 м/ч, а у других растений - около 1 м/ч.
3. Для подъема воды по таким трубкам к вершине высокого дерева необходимо давление порядка 4000 кПа. Самые высокие деревья - секвойи в Калифорнии и эвкалипты в Австралии - достигают в высоту более 100 м. Вода способна подниматься по тонким смачивающимся трубкам благодаря своему высокому поверхностному натяжению (это явление называется капиллярностью), однако только за счет этих сил даже по самым тончайшим сосудам ксилемы вода не поднимается выше 3 м.

Удовлетворительное объяснение этим фактам дает теория сцепления (когезии), или теория натяжения. Согласно этой теории, подъем воды от корней обусловлен ее испарением клетками листа. Как мы уже говорили в статье, испарение снижает водный потенциал клеток мезофилла, прилежащих к ксилеме, и вода поступает в эти клетки из ксилемного сока, водный потенциал которого выше; при этом она проходит через влажные клеточные стенки у концов жилок, как показано на рисунке.

Ксилемные сосуды заполняет сплошной столб воды; по мере того как вода выходит из сосудов, в этом столбе создается натяжение; оно передается вниз по стеблю до самого корня благодаря сцеплению (когезии) молекул воды. Эти молекулы стремятся «прилипнуть» друг к другу, потому что они полярны и притягиваются друг к другу электрическими силами, а затем удерживаются вместе водородными связями. Кроме того, они притягиваются к стенкам ксилемных сосудов, т. е. происходит их адгезия (прилипание) к ним. Сильная когезия молекул воды означает, что ее столб трудно разорвать - у него высокий предел прочности при растяжении. Растягивающее напряжение в клетках ксилемы приводит к генерированию силы, способной сдвигать весь водяной столб вверх по механизму объемного потока. Снизу вода поступает в ксилему из соседних клеток корня. При этом очень важно, что стенки ксилемных элементов жесткие и не спадаются при падении давления внутри, как это бывает, когда сосешь коктейль через мягкую соломинку. Жесткость стенок обеспечивается лигнином. Доказательством того, что жидкость внутри ксилемных сосудов сильно напряжена (растянута), служат суточные колебания диаметра древесных стволов, измеряемые инструментом под названием дендрограф.

Минимальный диаметр отмечен днем, когда интенсивность транспирации наивысшая. Натяжение столба воды в ксилемном сосуде немного втягивает внутрь его стенки (из-за адгезии), и сочетание этих микроскопических сжатий дает фиксируемую прибором общую «усадку» ствола.

Оценки прочности на разрыв столба ксилемного сока варьировали от 3000 доЗО 000 к Па, причем более низкие значения получены позднее. В листьях зарегистрирован водный потенциал порядка -4000 кПа, и прочность столба ксилемного сока, вероятно, достаточна, чтобы выдержать создающееся натяжение. Не исключено, конечно, что столб воды может иногда разрываться, особенно в сосудах большого диаметра.

Критики изложенной теории подчеркивают, что любое нарушение непрерывности столба сока должно немедленно останавливать весь поток, так как сосуд заполнится воздухом и паром (явление кавитации). Кавитацию может вызвать сильное сотрясение, изгибание ствола, а также дефицит воды. Хорошо известно, что на протяжении лета содержание воды в стволе дерева постепенно снижается, древесина заполняется воздухом. Этим пользуются лесозаготовители, потому что такие деревья легче сплавлять. Однако разрыв водного столба в части сосудов слабо влияет на общую скорость объемного потока. Возможно, дело в том, что вода перетекает в параллельно проходящие сосуды или же обходит воздушную пробку, продвигаясь по соседним паренхимным клеткам и по стенкам. Кроме того, согласно расчетам, для поддержания наблюдаемой скорости потока вполне достаточно, чтобы в каждый момент времени функционировала хотя бы небольшая доля ксилемных элементов. У некоторых деревьев и кустарников вода перемещается лишь по более молодой наружной древесине, называемой заболонью. У дуба и ясеня, например, проводящую функцию выполняют в основном сосуды текущего года, а остальная часть заболони играет роль водного резерва. Новые ксилемные сосуды образуются на протяжении всего вегетационного периода, но главным образом в его начале, когда скорость водного потока максимальна.

Вторая сила, обеспечивающая движение воды по ксилеме , - корневое давление. Его можно обнаружить и измерить в тот момент, когда срезают крону, а штамб с корнями некоторое время продолжает выделять сок из сосудов ксилемы. Этот процесс подавляется ингибиторами дыхания, например цианидом, и прекращается при недостатке кислорода и понижении температуры. Работа такого механизма, по-видимому, обусловлена активной секрецией солей и других водорастворимых веществ в ксилемный сок. В результате его водный потенциал падает, и вода поступает в ксилему из соседних клеток корня путем осмоса.

Этот механизм создает гидростатическое давление порядка 100-200 кПа (в исключительных случаях 800 кПа); одного его для подъема воды по ксилеме обычно недостаточно, однако у многих растений оно, несомненно, способствует поддержанию ксилемного тока. У медленно транспирирующих травянистых форм этого давления вполне хватает, чтобы вызвать у них мутацию. Так называется выделение воды на поверхности растения1 в виде капель жидкости, а не пара. Все условия, тормозящие транспира-цию, например слабая освещенность и высокая влажность, способствуют гуттации. Она обычна у многих видов дождевых тропических лесов и часто наблюдается на кончиках листьев у всходов трав.


Вода поступает в растение из почвы через корневые волоски и по сосудам разносится по всей его надземной части. В вакуолях растительных клеток растворены различные вещества. Частицы этих веществ давят на протоплазму, которая хорошо пропускает воду, но препятствует прохождению через нее растворенных в воде частиц. Давление растворенных веществ на протоплазму называется осмотическим давлением. Вода, поглощенная растворенными веществами, растягивает до известного предела эластичную оболочку клетки. Как только растворенных веществ становится меньше в растворе, содержание воды уменьшается, оболочка сокращается и принимает минимальный размер. Осмотическое давление постоянно поддерживает растительную ткань в напряженном состоянии, и лишь при большой потере воды, при завядании, это напряжение - тургор - в растении прекращается.

Когда осмотическое давление уравновешено растянувшейся оболочкой, вода не может поступать в клетку. Но стоит клетке потерять часть воды, как оболочка сокращается, находящийся в клетке клеточный сок становится более концентрированным, а вода начинает поступать в клетку, пока оболочка снова не растянется и не уравновесит осмотическое давление. Чем больше воды потеряло растение, тем с большей силой вода поступает в клетки. Осмотическое давление в растительных клетках довольно велико, и его измеряют, подобно давлению в паровых котлах, атмосферами. Силу, с которой растение всасывает воду, - сосущую силу - также выражают в атмосферах. Сосущая сила у растений часто достигает 15 атмосфер и выше.

Растение непрерывно испаряет воду через находящиеся в листьях устьица. Устьица могут раскрываться и закрываться, образовывать то широкую, то узкую щель. На свету устьица раскрываются, а в темноте и при слишком большой потере воды закрываются. В зависимости от этого испарение воды идет то - интенсивно, то почти совсем прекращается.
Если срезать растение под корень, из пенька начинает сочиться сок. Это показывает, что корень и сам нагнетает воду в стебель. Следовательно, поступление воды в растение зависит не только от испарения воды через листья, но и от корневого давления. Оно перегоняет воду из живых клеток корня в полые трубки омертвевших сосудов. Так как в клетках этих сосудов нет живой протоплазмы, вода беспрепятственно движется по ним к листьям, где испаряется через устьица.

Испарение очень важно для растения. С передвигающейся водой разносятся по всему растению поглощенные корнем минеральные вещества.
Испарение снижает температуру тела растения и тем самым предохраняет его от перегрева. Растение усваивает лишь 2-3 части поглощенной им из почвы воды, остальные 997 - 998 частей испаряются в атмосферу. Чтобы образовать один грамм сухого вещества, растение в нашем климате испаряет от 300 г до килограмма воды.

Вода, поступившая в клетки корня, под влиянием разности водных потенциалов, которые возникают благодаря транспирации и корневого давления, передвигается до проводящих элементов ксилемы. Согласно современным представлениям, вода в корневой системе передвигается не только по живым клеткам. Еще в 1932г. немецкий физиолог Мюнх развил представление о существовании в корневой системе двух относительно независимых друг от друга объемов, по которым передвигается вода, - апопласта и симпласта.

Апопласт - это свободное пространство корня, в которое входят межклетные промежутки, оболочки клеток, а также сосуды ксилемы. Симпласт - это совокупность протопластов всех клеток, отграниченных полупроницаемой мембраной. Благодаря многочисленным плазмодесмам, соединяющим между собой протопласт отдельных клеток, симпласт представляет единую систему. Апопласт не непрерывен, а разделен на два объема. Первая часть апопласта расположена в коре корня до клеток эндодермы, вторая - по другую сторону клеток эндодермы и включает в себя сосуды ксилемы. Клетки эндодермы благодаря пояскам. Каспари представляют как бы барьер для передвижения воды по свободному пространству (межклетникам и клеточным оболочкам). Передвижение воды по коре корня идет главным образом по апопласту, где она встречает меньшее сопротивление, и лишь частично по симпласту.

Однако, для того, чтобы попасть в сосуды ксилемы, вода должна пройти через полупроницаемую мембрану клеток эндодермы. Таким образом, мы имеем дело как бы с осмометром, у которого полупроницаемая мембрана расположена в клетках эндодермы. Вода устремляется через эту мембрану в сторону меньшего (более отрицательного) водного потенциала. Далее вода поступает в сосуды ксилемы. Как уже упоминалось, по вопросу о причинах, вызывающих секрецию воды в сосуды ксилемы, имеются различные суждения. Согласно гипотезе Крафтса, это следствие выброса солей в сосуды ксилемы, в результате чего там создается повышенная их концентрация, и водный потенциал становится более отрицательным. Предполагается, что в результате активного (с затратой энергии) поступления соли накапливаются в клетках корня. Однако интенсивность дыхания в клетках, окружающих сосуды ксилемы (перицикла), очень низкая, и они не удерживают соли, которые благодаря этому десорбируются в сосуды. Дальнейшее передвижение воды идет по сосудистой системе корня, стебля и листа. Проводящие элементы ксилемы состоят из сосудов и трахеид.

Опыты с кольцеванием показали, что восходящий ток воды по растению движется в основном по ксилеме. В проводящих элементах ксилемы вода встречает незначительное сопротивление, что, естественно, облегчает передвижение воды на большие расстояния. Правда, некоторое количество воды передвигается и вне сосудистой системы. Однако по сравнению с ксилемой сопротивление движению воды других тканей значительно больше (не менее чем на три порядка). Это приводит к тому, что вне ксилемы движется всего от 1 до 10% общего потока воды. Из сосудов стебля вода попадает в сосуды листа. Вода движется из стебля через черешок или листовое влагалище в лист. В листовой пластинке водопроводящие сосуды расположены в жилках. Жилки, постепенно разветвляясь, становятся все более мелкими. Чем гуще сеть жилок, тем меньшее сопротивление встречает вода при передвижении к клеткам мезофилла листа. Именно поэтому густота жилкования листа считается одним из важнейших признаков ксероморфной структуры - отличительной чертой растений, устойчивых к засухе.

Иногда мелких ответвлений жилок листа так много, что они подводят воду почти к каждой клетке. Вся вода в клетке находится в равновесном состоянии. Иначе говоря, в смысле насыщенности водой имеется равновесие между вакуолью, цитоплазмой и клеточной оболочкой, их водные потенциалы равны. В связи с этим, как только в силу процесса транспирации возникает ненасыщенность водой клеточных стенок паренхимных клеток, она сейчас же передается внутрь клетки, водный потенциал которой падает. Вода передвигается от клетки к клетке благодаря градиенту водного потенциала. По-видимому, передвижение воды от клетки к клетке в листовой паренхиме идет не по симпласту, а в основном по клеточным стенкам, где сопротивление значительно меньше.

По сосудам вода движется благодаря создающемуся в силу транспирации градиенту водного потенциала, градиенту свободной энергии (от системы с большей свободой энергии к системе с меньшей). Можно привести примерное распределение водных потенциалов, которое и вызывает передвижение воды: водный потенциал почвы (0,5 бара), корня (2 бара), стебля (5 бар), листьев (15 бар), воздуха при относительной влажности 50% (1000 бар).

Однако ни один всасывающий насос не может поднять воду на высоту больше 10м. Между тем есть деревья, у которых вода поднимается на высоту более 100м. Объяснение этому дает теория сцепления, выдвинутая русским ученым Е. Ф. Вотчалом и английским физиологом Е. Диксоном. Для лучшего понимания рассмотрим следующий опыт. В чашку с ртутью помещают заполненную водой трубку, которая заканчивается воронкой из пористого фарфора. Вся система лишена пузырьков воздуха. По мере испарения воды ртуть поднимается по трубке. При этом высота подъема ртути превышает 760мм. Это объясняется наличием сил сцепления между молекулами воды и ртути, которые в полной мере проявляются при отсутствии воздуха. Сходное положение, только еще более ярко выраженное, имеется в сосудах у растений.

Вся вода в растении представляет единую взаимосвязанную систему. Поскольку между молекулами воды имеются силы сцепления (когезия), вода поднимается на высоту, значительно большую 10м. Расчеты показали, что благодаря наличию сродства между молекулами воды силы сцепления достигают величины - 30 бар. Это такая сила, которая позволяет поднять воду на высоту, равную 120м, без разрыва водных нитей, что примерно и составляет максимальную высоту деревьев. 120м, без разрыва водных нитей, что примерно и составляет максимальную высоту деревьев. Силы сцепления существуют и между водой и стенками сосудов (адгезия). Стенки проводящих элементов ксилемы эластичны. В силу этих двух обстоятельств даже при недостатке воды связь между молекулами воды и стенками сосудов не нарушается. Это подтверждается исследованиями по изменению толщины стебля травянистых растений. Определения показали, что в полуденные часы толщина стебля растений уменьшается. Если перерезать стебель, то сосуды сразу расширяются и воздух врывается в них. Из этого опыта видно, что при сильном испарении сосуды сужаются и это приводит к появлению отрицательного давления. Благодаря этому

Ψ в.сосуда = Ψ осм.+ Ψ давл.

Степень натяжения водных нитей в сосудах зависит от соотношения процессов поглощения и испарения воды. Все это позволяет растительному организму поддерживать единую водную систему и не обязательно восполнять каждую каплю испаряемой воды. Таким образом, при нормальном водоснабжении создается непрерывность воды в почве, растении и атмосфере. В том случае, если в отдельные членики сосудов попадает воздух, они, по-видимому, выключаются из общего тока проведения воды. Таков путь воды по растению и его основные движущие силы. Современные методы исследования позволяют определить скорость передвижения воды по растению. Скорость передвижения воды определяется разностью водных потенциалов в начале и конце пути, а также сопротивлением, которое она встречает. Согласно полученным данным, скорость движения воды в течение суток изменяется. В дневные часы она значительно больше. При этом разные виды растений отличаются по скорости передвижения воды. Если скорость передвижения у хвойных пород обычно 0,5-1,2 м/ч, то у лиственных она значительно выше. У дуба, например, скорость передвижения составляет 27 - 40 м/ч. Скорость передвижения воды мало зависит от напряженности обмена веществ. Изменение температуры, введение метаболических ингибиторов не влияют на передвижение воды. Вместе с тем этот процесс, как и следовало ожидать, очень сильно зависит от скорости транспирации и от диаметра водопроводящих сосудов. В более широких сосудах вода встречает меньшее сопротивление. Однако надо учитывать, что в более широкие сосуды скорее могут попасть пузырьки воздуха или произойти какие-либо иные нарушения тока воды.



Ксилема цветковых растений состоит из двух типов структур, переносящих воду,- трахеид и сосудов. В разд. 8.2.1 мы уже говорили о том, как выглядят соответствующие клетки в световом микроскопе, а также на микрофотографиях, полученных с помощью сканирующего электронного микроскопа (рис. 8.11). Строение вторичной ксилемы (древесины) мы рассмотрим в разд. 21.6.6.

Ксилема вместе с флоэмой образует проводящую ткань высших растений. Эта ткань состоит из так называемых проводящих пучков , которые состоят из особых трубчатых структур. На рис. 14.15 показано, как устроены проводящие пучки и как они располагаются в первичном стебле у двудольных и однодольных растений.

14.19. Резюмируйте в виде таблицы различия в строении первичного стебля у двудольных и однодольных растений.

14.20. Какова трехмерная форма следующих тканевых компонентов: а) эпидермиса; б) ксилемы; в) перицикла двудольных и г) сердцевины?

То, что вода может подниматься по ксилеме, очень легко продемонстрировать, погрузив нижний конец срезанного стебля в разбавленный раствор красителя, например эозина. Краситель поднимается по ксилеме и распространяется по всей сети листовых жилок. Если сделать тонкие срезы и просмотреть их в световом микроскопе, краситель будет обнаружен в ксилеме.

То, что ксилема проводит воду, лучше всего показывают опыты с "кольцеванием". Такие опыты проводили задолго до того, как стали применяться радиоактивные изотопы, позволяющие очень легко проследить путь вещества в живом организме. В одном из вариантов опыта вырезают кольцо коры с флоэмой. Если опыт не очень продолжителен, такое "кольцевание" не влияет на подъем воды по стеблю. Однако, если отслоить лоскут коры и вырезать ксилему, не повреждая лоскута коры, растение быстро завянет.

Любая теория, объясняющая передвижение воды по ксилеме, не может не учитывать следующие наблюдения:

1. Сосуды ксилемы-мертвые трубки с узким просветом, диаметр которого варьирует в пределах от 0,01 мм в "летней" древесине примерно до 0,2 мм в "весенней" древесине.

2. Большие количества воды переносятся относительно быстро: у высоких деревьев зарегистрирована скорость подъема воды до 8 м/ч, а у других растений она часто составляет около 1 м/ч.

3. Чтобы поднять воду по таким трубкам к вершине высокого дерева, необходимо давление порядка 4000 кПа. Самые высокие деревья - калифорнийские гигантские секвойи (хвойные, у которых нет сосудов и есть только трахеиды) и австралийские эвкалипты - бывают выше 100 м. Вода поднимается по тонким капиллярным трубкам благодаря высокому поверхностному натяжению под действием капиллярных сил; однако только за счет этих сил даже по самым тончайшим сосудам ксилемы вода не поднимется выше 3 м.

Все эти наблюдения удовлетворительно объясняет теория сцепления (когезии), или теория натяжения . Согласно этой теории, подъем воды от корней обусловлен испарением воды из клеток листа. Как мы уже говорили в разд. 14.3, испарение приводит к снижению водного потенциала клеток, примыкающих к ксилеме. Поэтому вода входит в эти клетки из ксилемного сока, у которого более высокий водный потенциал; при этом она проходит через влажные целлюлозные клеточные стенки сосудов ксилемы на концах жилок, как показано на рис. 14.7.

Сосуды ксилемы заполнены водой, и по мере того как вода выходит из сосудов, в столбе воды создается натяжения. Оно передается вниз по стеблю на всем пути от листа к корню благодаря сцеплению (когезии) молекул воды. Эти молекулы стремятся "прилипнуть" друг к другу, потому что они полярные и притягиваются друг к другу электрическими силами, а затем удерживаются вместе за счет водородных связей (разд. 5.1.2). Кроме того, они стремятся прилипнуть к стенкам сосудов под действием сил адгезии . Высокая когезия молекул воды означает, что для того, чтобы разорвать столб воды, требуется сравнительно большое растягивающее усилие; иными словами, столб воды обладает высокой прочностью на разрыв. Натяжение в сосудах ксилемы достигает такой силы, что может тянуть весь столб воды вверх, создавая массовый поток; при этом вода поступает в основание такого столба в корнях из соседних клеток корня. Необходимо, чтобы стенки сосудов ксилемы тоже обладали высокой прочностью и не вдавливались внутрь.

Такую прочность обеспечивают лигнин и целлюлоза. Данные о том, что содержимое сосудов ксилемы находится под воздействием большой растягивающей силы, были получены при измерении суточных изменений диаметра ствола у деревьев с помощью прибора, называемого дендрометром. Минимальные значения регистрировались в дневные часы, когда скорость транспирации максимальна. Крохотное сжатие отдельных сосудов ксилемы суммировалось и давало вполне измеримое уменьшение диаметра всего ствола.

Оценки прочности на разрыв для столба ксилемного сока варьируют в пределах примерно от 3000 до 30 000 кПа, при этом более низкие значения получены позднее. В листьях зарегистрирован водный потенциал порядка -4000 кПа, и прочность столба ксилемного сока, вероятно, достаточна, чтобы выдержать создающееся натяжение. Не исключено, конечно, что столб воды может иногда разрываться, особенно в сосудах большого диаметра.

Критики этой теории указывают на то, что любое нарушение непрерывности столба сока должно немедленно останавливать весь поток, так как сосуд должен заполняться воздухом и парами воды (явление кавитации ). Кавитацию может вызвать сильное сотрясение, сгибание ствола или недостаток воды. Хорошо известно, что на протяжении лета содержание воды в стволе дерева постепенно уменьшается, а древесина заполняется воздухом. Это используется в лесной промышленности, потому что такое дерево обладает лучшей плавучестью. Однако разрыв водного столба в части сосудов не очень сильно влияет на скорость переноса воды. Это можно объяснить тем, что вода переходит из одного сосуда в другой или же обходит воздушную пробку, передвигаясь по соседним клеткам паренхимы и их стенкам. Кроме того, согласно расчетам, для поддержания наблюдаемой скорости потока вполне достаточно, чтобы в каждый момент времени функционировала хотя бы небольшая часть сосудов. У некоторых деревьев и кустарников вода передвигается только по самому молодому наружному слою древесины, который называют заболонью . У дуба и ясеня, например, вода движется главным образом по сосудам текущего года, а остальная часть заболони выполняет функцию водного резерва. В течение вегетационного сезона все время прибавляются новые и новые сосуды, но больше всего их образуется в начале сезона, когда скорость потока гораздо выше.

Вторая сила, которая участвует в передвижении воды по ксилеме,- это корневое давление . Его можно обнаружить и измерить в тот момент, когда отрезают крону, а штамб с корнями продолжает выделять сок из сосудов ксилемы. Этот процесс эксудации подавляется цианидом и другими ингибиторами дыхания и прекращается при недостатке кислорода или понижении температуры. Для работы такого механизма, по-видимому, нужна активная секреция в ксилемный сок солей и других водорастворимых веществ, снижающих водный потенциал. Затем в ксилему поступает вода за счет осмоса из соседних клеток корня.

Одного положительного гидростатического давления около 100-200 кПа (в исключительных случаях до 800 кПа), создаваемого за счет корневого давления, обычно недостаточно, чтобы обеспечить передвижение воды вверх по ксилеме, но его вклад у многих растений несомненен. У медленно транспирирующих травянистых форм этого давления, однако, вполне хватает для того, чтобы вызвать гуттацию. Гуттация - это выведение воды в виде капель жидкости на поверхности растения (тогда как при транспирации вода выходит в виде пара). Все условия, уменьшающие транспирацию, т. е. слабая освещенность, высокая влажность и т.п., способствуют гуттации. Она весьма обычна у многих растений влажных тропических лесов и часто наблюдается на кончиках листьев молодых проростков.

14.21. Перечислите те свойства ксилемы, благодаря которым она обеспечивает транспорт воды и растворенных в ней веществ на большие расстояния.

Секвойи, растущие в Калифорнии, являются одними из самых высоких деревьев в мире. Они достигают в высоту 110 метров. Возраст некоторых деревьев составляет 2000-3000 лет! Трудно передать то неизгладимое впечатление, которое оставляет прогулка среди этих гигантов. Истина сотворения здесь явлена могущественно. Клетки дерева организованы так, чтобы составлять корни, ствол, кору, водяные колонны, ветки и листья. Дерево напоминает гигантскую химическую фабрику. В нем в безупречном порядке происходят чрезвычайно сложные химические процессы.

Поразительно то, что это огромное дерево вырастает из маленького семени весом около 5 грамм. Только подумайте: вся информация о развитии и организации этих гигантов заложена в их ДНК, в крошечном круглом семени. Семя выполняет все “указания”, находящиеся в его ДНК, и превращается в гигантскую структуру, ни с чем не сравнимую по внешнему виду и размерам, содержащую 2500 тонн древесины. Потрясающе, не так ли?


Гигантская секвойя “Генерал Шерман”.
Ее высота равна 83,8 м, а периметр ствола у основания составляет 34,9 м. Возраст дерева насчитывает 2500 лет. Это дерево считается самым большим живым организмом на Земле. Его вес вместе с корневой системой составляет 2500 т. Объем дерева – 17000 кубометров, что в 10 раз больше, чем объем голубого кита.

В Писании сказано: «Бог высок могуществом Своим, и кто такой, как Он, наставник? …Помни о том, чтобы превозносить дела Его, которые люди видят. Все люди могут видеть их; человек может усматривать их издали» (Иов 36:22,24-25). Действительно, все люди могут видеть дела Божьи.

В день через листья секвойя выделяет до 600 литров воды, поэтому она постоянно поднимает воду от корней к веткам, преодолевая силу гравитации. Как же это удается дереву, не имеющему механических насосов? 100 метров – это действительно впечатляющая высота, сравнимая с двумя 14-этажными домами. Оказывается, внутри ствола секвойи есть специальная система узких взаимосвязанных трубочек, называемая ксилемой. Эта сложная внутренняя ткань дерева служит для того, чтобы проводить воду от корней к листьям. Трубочки ксилемы образуют клетки, расположенные одна над другой. Все вместе они формируют невероятно длинную колонну, простирающуюся от корней через ствол к листьям. Чтобы “качать” воду, секвойя должна формировать в этой трубе беспрерывную колонну воды.

Дерево поддерживает воду на протяжении всей своей жизни. Вспомните, как сильный ветер гнет дерево и ветки. Однако благодаря тому, что проводящая трубка состоит из миллионов маленьких отрезков, состыкованных вместе, поток воды постоянно удерживается. Одна цельная трубка не выполнила бы этой задачи. Поскольку вода обычно не течет вверх, как же дереву удается качать ее на такую высоту? Корни «подтягивают» воду вверх, а действие капиллярности (способность воды немного подниматься по стенкам трубки) добавляет давления. Однако эта сила обеспечивает дереву поднятие воды лишь на 2-3 метра. Основная движущая сила – это испарение и притяжение между молекулами воды. Молекулы имеют позитивно и негативно заряженные частицы, благодаря чему они сцепляются между собой с огромной силой, которая, согласно экспериментальным измерениям, составляет 25-30 атмосфер (1 атмосфера равна нормальному атмосферному давлению на уровне моря). Этого достаточно, чтобы продавить подводную лодку времен Второй Мировой войны, плывущую на глубине 350 метров под водой. Секвойя же запросто поддерживает давление в 14 атмосфер наверху водяной колонки. Вода, испаряясь с листьев, порождает силу всасывания. Молекула воды испаряется с листка и благодаря силе молекулярного притяжения тянет за собой другие молекулы вокруг нее, что создает небольшое всасывание в водяной колонке и тянет воду от соседних клеток листка. Эти молекулы, в свою очередь, притягивают окружающие их молекулы. Цепочка движения продолжается к самой земле и двигает воду от корней к верхушке дерева подобно тому, как насос поднимает воду из колонки на поверхность.

Мы понимаем, что дерево само не могло придумать такую сложную систему, которая мудро использует физику воды и энергию Солнца. Мы воздаем всю Славу Богу, Создателю неба и земли. Деревья-гиганты свидетельствуют об историчности книги Бытие, которая открывает нам их истинное происхождение: «И сказал Бог: да произрастит земля зелень, траву, сеющую семя, дерево плодовитое, приносящее по роду своему плод, в котором семя его на земле. И стало так» (Бытие 1:11).

Д. Куровский

Без воды ни одно растение не смогло бы существовать. Как вода попадает в растение и за счет какой силы проникает в каждую клетку организма?

Наука не стоит на месте, поэтому данные о водном обмене растений постоянно дополняются новыми фактами. Л.Г. Емельянов на основании имеющихся данных разработал ключевой подход к пониманию водного обмена растений.

Он поделил все процессы на 5 этапов:

  1. Осмотический
  2. Коллоидно-химический
  3. Теромодинамический
  4. Биохимический
  5. Биофизический

Данный вопрос продолжается активно изучаться, поскольку водный обмен непосредственно связан с водным статусом клеток. Последнее в свою очередь является показателем нормальной жизнедеятельности растения . Некоторые растительные организмы на 95% состоят из воды. В высушенном семени и спорах содержится 10% воды, в этом случае происходит минимальный метаболизм.

Без воды в живой организме не будет протекать ни одной реакции обмена, вода необходима для связи всех частей растения и координации работы организма.

Вода находится во всех частях клетки, в частности, в клеточных стенках и мембранах, составляет большую часть цитоплазмы. Без воды не могли быть существовать коллоиды и молекулы белка. Подвижность цитоплазмы осуществляется за счет большого содержания воды. Также жидкая среда способствует растворению веществ, которые попадают в растение, и разносит их во все части организма.

Вода необходима для следующих процессов:

  • Гидролиз
  • Дыхание
  • Фотосинтез
  • Другие окислительно-восстановительные реакции

Именно вода помогает растению адаптироваться к внешней среде, сдерживает негативное воздействие перепадов температуры. Кроме того, без воды травянистые растения не могли бы поддерживать вертикальное положение.

Вода поступает в растение из почвы, ее поглощение осуществляется с помощью корневой системы. Чтобы произошел водный ток, в работу вступают нижний и верхний двигатели.

Энергия, которая тратится на передвижение воды равняется сосущей силе. Чем больше растение поглотило жидкости, тем выше по значению будет водный потенциал. Если воды недостаточно, то клетки живого организма обезвоживаются, водный потенциал уменьшается, а сосущая сила увеличивается. Когда появляется градиент водного потенциала, вода начинает циркулировать по растению. Его возникновению способствует сила верхнего двигателя.

Верхний концевой двигатель работает независимо от корневой системы. Механизм работы нижнего концевого двигателя можно можно увидеть рассмотрев процесс гуттации.

Если лист растения насыщен водой , а влажность воздуха окружающей среды повышена, то испарение происходить не будет. При этом с поверхности будет выделяться жидкость с растворенными в ней веществами, будет происходить процесс гуттации. Такое возможно, если корнями воды поглощается больше, чем успевает испаряться листьями. Гуттацию видел каждый человек, она зачастую происходит ночью или утром, при высокой влажности воздуха.

Гуттация характерна для молодых растений, корневая система которых развивается быстрей, чем надземная часть.

Капли выходят наружу через водяные устьица, чему способствует корневое давление. При гуттации растение теряет минеральные вещества. При этом оно избавляется от лишних солей или кальция.

Второе подобное явление – плач растений. Если к свежему срезу побега приложить стеклянную трубку, по ней будет двигаться жидкость с растворенными минеральными веществами. Происходит это, поскольку от корневой системы вода движется только в одну сторону, такое явление называется корневым давлением.

На первом этапе корневая система поглощает воду из почвы. Водные потенциалы действуют под разными знаками, что приводит к движению воды в определенном направлении. К разности потенциалов приводит транспирация и корневое давление.

В корнях растений есть два пространства, которые не зависят друг от друга. Называются они апопласта и симпласта.

Апопласт – свободное место в корне, которое состоит из сосудов ксилемы, оболочек клеток и межклеточного пространства. Апопласт в свою очередь разделен еще на два пространства, первое располагается до эндодермы, второе после нее и состоит из сосудов ксилемы. Эндодрема выполняет роль барьера, чтобы воды не переходила на пределы своего пространства. Симпласт – протопласты всех клеток объединенные частично проницаемой мембраной.

Вода проходит следующие этапы:

  1. Полупроницаемая мембрана
  2. Апопласт, частично сипласт
  3. Сосуды ксилемы
  4. Сосудистая система всех частей растений
  5. Черешки и листовые влагалища

По листу воды двигается по жилкам, они имеют ветвистую систему. Чем больше жилок имеется на листе, тем легче воды двигается по направлению к клеткам мезофилла. в данном случае количество воды в клетке уравновешено. Сосущая сила позволяет передвигаться воде от одной клетки к другой.

Растение погибнет, если ей будет недоставать жидкости и связано это не с тем, что в ней протекают биохимические реакции. Имеет значение физико-химический состав воды, в которой происходят жизненно важные процессы. Жидкость способствует появлению цитоплазматических структур, которые не могут существовать вне этой среды.

Вода образует тургор растений, поддерживает постоянную форму органов, тканей и клеток. Вода является основой внутренней среды растения и других живых организмов.

Больше информации можно узнать из видео.