Конспект урока "развитие представлений о строении мира". Технологическая карта урока "развитие представлений о строении мира" Развитие представлений о строении мира презентация

  • 15.06.2021

В развитии наших представлений о картине Мира выделяются четыре этапа: I) древний; 2) средневековый; 3)новый и 4)новейший, или современный.

В течение первого этапа был сделан ряд открытий. Их следует оценивать как крупнейшие уже хотя бы потому, что отсчет сделанному здесь идет от нуля. Но не только поэтому. Открытия, о которых речь будет идти ниже, позволили в дальнейшем установить масштабы Мира. Остановимся вкратце на некоторых из них.

Пифагор (VI век до н.э.) высказал идею о том, что Земля и другие небесные тела - шары. Подтверждения этому были найдены еще в древности, в частности, Аристотелем в IV веке до н.э. (в этой связи возникает вопрос: какие данные указывают на то, что Земля - шар?). Эратосфен (III век до н.э.) с удивительной точностью определил радиус Земли . Согласно Эратосфену (современное значение ).

Задача №1. Предложите метод нахождения радиуса Земли. Как это можно сделать сейчас, и как это можно было сделать еще в древности?

Гиппарх (II век до н.э.) первым начал проводить систематические наблюдения положения на небе Солнца, Луны и планет. Он определил радиус Луны, расстояние до неё и разработал метод предвычисления моментов затмений.

Задача №2. Предложите метод определения расстояния до Луны.

Примерно за тысячу лет до нашей эры была установлена продолжительность года и то, что год содержит нецелое число суток. Последнее очень важно, так как оно характеризует точность его определения и уровень исследований. Сейчас мы знаем, что продолжительность года есть период вращения Земли вокруг Солнца, а суток - вокруг своей оси. И совершенно ясно, что в общем случае эти периоды не обязаны быть кратными друг другу*. Однако в то время природа этих периодов не была известна. Продолжительность года определялась с помощью измерения положения на небе небесных тел. Следовательно, эти измерения выполнялись с такой точностью, которая как раз и позволила установить, что в году нецелое число суток. (Чтобы почувствовать сложность этой проблемы, можно поставить такую задачу: предложите метод определения продолжительности года.). В I веке до н.э. при Юлии Цезаре был разработан календарь - он называется юлианским, который с незначительными изменениями дошел до наших дней.

Этот период заканчивается созданием геоцентрической системы Мира, которую принято называть Птолемеевой (II век н.э.), хотя в ее разработке принимали участие известнейшие ученые различных поколений, такие как Платон (V-IV век до н.э.), Аристотель и другие. Согласно этой системе в центре Мира находится Земля. Вокруг нее вращаются Луна, Солнце, планеты и звезды. Планеты и звезды видны как точки. Звезды отличаются от планет тем, что их расположения относительно друг друга не меняются, тогда как положения планет меняются относительно звезд и относительно друг друга (в переводе с греческого слово "планета" означает "блуждающая"). Во времена Птолемея были известны пять планет.

Обсудим вкратце систему Птолемея. В качестве первого шага естественно принять простейшую картину устройства Мира, согласно которой все небесные тела вращаются по круговым орбитам, скажем, вокруг Земли. Вообще говоря, такие идеи высказывались и до Птолемея (кстати, принцип исследования, основанный на том, что природа избирает простейшие решения, является весьма плодотворным и в дальнейшем будет неоднократно демонстрироваться). Однако уже во времена Птолемея были известны факты, которые не укладывались в эту схему. Главный из них - это так называемое попятное движение планет. Как показали наблюдения, планеты на небе прочерчивают замысловатые петлеобразные траектории (рис. 1). Необходимо было объяснить, почему в некоторые периоды планеты движутся назад.

С помощью собственных наблюдений, а также используя наблюдения Гиппарха и высказывавшиеся ранее идеи о том, что неравномерные движения небесных тел можно разложить на сумму равномерных движений по окружностям, Птолемей смог не просто объяснить попятное движение планет, но и дать метод, с помощью которого можно было наперед рассчитывать положения планет. Вкратце суть теории Птолемея заключается в следующем. Движение планет в первом приближении можно представить в виде суммы двух движений. Первое - это движение планеты по некоей окружности - эпициклу. В свою очередь, центр эпицикла, или как бы мы сейчас сказали - ведущий центр - движется по окружности большего радиуса, названной деферентом (рис. 2). В действительности для того, чтобы объяснить все известные в то время особенности в движении планет, Птолемею приходилось прибегать к более сложным построениям, номы ограничимся этой простейшей схемой.

В литературе иногда можно встретить категорическую оценку, что система Птолемея в принципе неверна и даже чуть ли не реакционная. На самом деле теория строения природных объектов сама по себе не может быть реакционной. Что же касается физического содержания, то оно, безусловно, отсутствовало в теории Птолемея. Это и неудивительно, ведь законы механики были открыты Ньютоном спустя примерно полторы тысячи лет. Система Птолемея носила чисто геометрический характер (впрочем, для того чтобы понять природу эпициклов, ниже предлагается Задача №6 ). Она прослужила до середины второго тысячелетия и вполне удовлетворяла практическим запросам того времени*.

Расположение Земли в центре Вселенной на современном языке означает, что Птолемей связал начало координат с Землей. С точки зрения современной физики выбор системы отсчета, вообще говоря, не является принципиальным в том смысле, что в любой системе отсчета можно правильно описывать явления природы. Просто некоторые системы отсчета являются более предпочтительными, поскольку в этих системах отсчета законы движения тел выглядят проще. Так, при описании движения замкнутой системы тел, взаимодействующих, скажем, гравитационно, предпочтительной является система координат, связанная с центром масс. Применительно к Солнечной системе можно сказать, что масса Солнца почти в I000 раз больше суммарной массы всех планет, и размеры ее таковы, что центр масс располагается внутри Солнца. Именно по этой причине система отсчета, связанная с Солнцем, оказывается наиболее предпочтительной при рассмотрении движения планет.

Во времена Птолемея почти не было наблюдательных данных, которые непосредственно указывали бы на движение Земли вокруг Солнца (попятные движения планет он объяснил с помощью эпициклов). Поэтому он естественно принял наиболее простую с его (да и не только его) точки зрения систему координат, связанную с Землей. Хотя еще задолго до него, в III веке до н.э. Аристарх Самосский пришел к выводу о том, что Солнце является самым большим телом в нашей системе, и поэтому оно должно быть в центре, а Земля вращается вокруг него. Однако эта идея не получила в то время должного признания, и восторжествовала геоцентрическая система Мира Птолемея - Аристотеля.

Как известно на смену античному миру пришла эпоха мрачного средневековья. Развитие всех наук затормозилось более чем на тысячу лет. Геоцентрическая система Мира совпала с установкой господствующей идеологии, что Земля в центре Вселенной. Поэтому в этот период если что и делается, то в основном для подтверждения ортодоксальной точки зрения, и напротив, пресекаются всякие попытки выйти за ее рамки. Этот период можно охарактеризовать отсутствием значительных открытий, хотя и нельзя сказать, что совершенно ничего не делалось. При каждом приличном дворе обязательно были ученые, занимавшиеся изучением небесных тел, строились обсерватории, накапливался наблюдательный материал. В частности, в начале второго тысячелетия было обнаружено значительное отклонение действительных положений планет на небе от предсказанных в рамках теории Птолемея. В общем, подготавливался фундамент для последующих эпохальных открытий.

Новое время принято отсчитывать с XVI-XVII веков, когда в Нидерландах, а затем в Англии произошли буржуазные революции. Капитализм, пришедший на смену феодализму, разрушил путы, сковывавшие развитие производительных сил и науки. Но еще раньше, в XV веке началась эпоха великих географических открытий. Освоение новых пространств, путешествия через океан, где нет никаких ориентиров, кроме звезд на небе, стимулировали разработку более точных и простых методов ориентирования и счисления времени, чем те, которые могла обеспечить геоцентрическая система Птолемея. Все это, а также накопленный материал подготовили почву для революции в наших представлениях о строении Мира, которую и совершил в середине XVI века Николай Коперник. Коперник предложил ставшую сейчас общепринятой гелиоцентрическую систему, согласно которой Солнце расположено в центре, а Земля и другие планеты вращаются вокруг него (кстати сказать, эта система строения Солнечной системы даже еще проще, чем геоцентрическая, так что принцип максимальной простоты устройства Природы здесь полностью оправдался). Попятное движение планет в теории Коперника объясняется совершенно непринужденно (как?).

Открытие Коперника оценивается как первая революция в естествознании. Оно явилось началом целой серии эпохальных открытий. После Коперника в течение короткого времени, порядка ста лет, произошел качественный скачок в понимании фундаментальных принципов устройства окружающего нас Мира. Спустя приблизительно полвека И. Кеплер открыл законы движения планет, а еще примерно через полвека И. Ньютон установил законы механики и закон всемирного тяготения. Сюда нужно также добавить развитие математики, в особенности, дифференциального и интегрального исчисления. В совокупности эти открытия позволили не только вычислять с огромной точностью движения небесных тел, но и предсказать существование новых планет - Нептуна и Плутона, Блестящим подтверждением этих идей явилось также предсказанное Ньютоном возвращение кометы Галлея.

На эту же эпоху приходится изобретение Г. Галилеем телескопа (начало XVII века). Дальнейшее его усовершенствования позволило сделать ряд новых открытий. С точностью до нескольких процентов было определено расстояние до Солнца, то есть установлены абсолютные масштабы Солнечной системы (Дж.Кассини, начало XVIII века), и стало возможным найти массу Солнца. В XIX веке измерены расстояния до ближайших звезд (Ф. Бесселем и др.).

В середине XVII века Ньютон положил начало спектральным исследованиям, разложив с помощью трехгранной призмы солнечный свет в спектр. В прошлом веке было замечено, что между видом спектра (скажем, наличием тех или иных спектральных линий) и химическим составом излучающего вещества есть связь. Тем самым появилась возможность изучать химический состав Солнца, планет и звезд. Поразительным результатом этих работ стало открытие на Солнце нового элемента - гелия, второго элемента в таблице Менделеева. Самое удивительное заключается в том, что гелий на Земле был обнаружен лишь после того, как он был открыт на Солнце. Это открытие явилось блестящим подтверждением идеи о материальном единстве Мира.

Во второй, половине прошлого века были начаты работы по спектральной классификации звезд. Одной из самых важных вех в этом направлении явилось обнаружение Э. Герцщпрунгом и Г. Ресселом в начале нашего века зависимости между светимостями, то есть мощностью излучения звезд и их спектрами. На этом фактически завершился период накопления и классификации звездных данных. Установленные связи между звездными параметрами и должна была объяснить теория строения звезд. Этим заканчивается третий этап.

Непременно нужно отметить, что огромную роль, как на этом, так и на последующем этапе сыграло изобретение в прошлом веке фотографии.

Последний, современный этап развития наших представлений о строении природы в больших масштабах можно охарактеризовать несколькими наиболее главными моментами. Становление квантовой механики сделало возможным анализ звездных спектров и определения по ним физического состояния и количественного элементного состава вещества звезд. Наконец, развитие ядерной физики привело к решению основной проблемы звезд - проблемы источниковихэнергии (А. Эддингтон, Р. Аткинсон, Ф. Хоутерманс, Г. Бете, К.-Ф. Вайцзеккер). Последующее развитие вычислительной техники позволило более-менее детально рассчитывать внутреннее строение звезд. Тем самым в основном получил свое решение вопрос о том, что представляют собой и как устроены звезды, хотя исследования звезд на этом не закончились. Они продолжаются и в нестоящее время. Можно с уверенностью сказать, что звезды - это проблема, которой еще долго будут заниматься. Нас ждет еще немало открытий. Иллюстрацией к тому является открытие нейтронных звезд.

Второе важнейшее направление исследований связано с открытием мира галактик. Спиральные туманности были известны еще в прошлом веке, но лишь в 1923 г. Э. Хаббл надежно определил расстояние до одной из ближайших галактик - Туманности Андромеды. К 30-му году были установлены размеры Млечного Пути. В I922-I924 гг. наш соотечественник А.М. Фридман на основе общей теорий относительности, созданной в 1915 г. А. Эйнштейном, разработал теорию расширяющейся Вселенной. В 1929 г. Хаббл открыл связь между скоростью удаления галактик и расстоянием до них, блестяще подтвердив тем самым теорию Фридмана. Бурное развитие этого направления началось в 60-е годы после открытия реликтового излучения и квазаров. Уже в наше время создана, пожалуй, одна из самых красивых теорий - теория "пенной" структуры Вселенной.

Что еще отличает исследования в нашу эпоху - это вывод аппаратуры за пределы земной атмосферы с помощью космических аппаратов. Исследованиям стал доступен весь диапазон электромагнитного излучения - от инфракрасного до гамма. Образно говоря, окно, через которое к нам поступает информация, стало существенно больше. Благодаря этому, сделан целый ряд крупных открытий, но еще большее количество открытий впереди. Возможно, уже в ближайшие годы мы сможем увидеть планеты у других звезд и, быть может, узнать что-то о жизни вне Земли. Это было бы самым крупным событием за всю историю человечества.

В заключение хотелось бы остановиться на таком вопросе. Прослеживая развитие науки за большой промежуток времени, можно заметить определенную корреляцию между периодами подъема в науке и потребностями той или иной эпохи. В целом, так сказать, статистически этот вывод вряд ли подлежит сомнению. Развитие общества и производительных сил, безусловно, стимулирует развитие науки и даже чуть ли не диктует те или иные открытия. Вместе с тем развитие науки может происходить относительно самостоятельно. Классическим примером тому является создание Эйнштейном общей теории относительности, которая в отличие от, скажем, специальной теории относительности или квантовой механики "в дверь не стучалась".

Конец работы -

Эта тема принадлежит разделу:

Предмет и цели курса

Учреждение высшего профессионального образования.. южный федеральный университет.. кафедра физики космоса..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Предмет и цели курса
Предметом изучения настоящего курса являются планеты, звезды, Солнце как ближайшая звезда и Солнечная система, межзвездная среда, наша Галактика, другие галактики, крупномасштабная структура Вселен

В больших масштабах
Сейчас трудно определенно сказать, что побудило человека заинтересоваться звездами - практические потребности или любопытство. Скорее всего, и то и другое, хотя не исключено, что любопытство было п

Достоверность знаний о мегамире
Вопрос о достоверности наших знаний об устройстве природы в больших масштабах занимает особое место. Изучая космические объекты, приходится сталкиваться с громадными расстояниями и промежутками вре

Измерение расстояний до небесных тел
Проблема расстояний в астрофизике - проблема номер один. Ведь от ее решения зависят масштабы тех или иных объектов, следовательно, строение этих объектов и процессы, которые привлекаются для объясн

Законы Кеплера
Отталкиваясь от идеи Коперника о том, что планеты движутся по окружностям, Кеплер в течение длительного времени пытался подобрать параметры орбит так, чтобы они удовлетворяли наблюдательным данным

Движение Земли вокруг Солнца
Существуют три факта, которые непосредственно указывает на движение Земли вокруг Солнца. 1. Наблюдения показали, что угловое расстояние в полдень Солнца от экватора на одн

Солнечная система
Задача №10. Оценить отношение моментов импульса, связанных с вращением Юпитера вокруг Солнца и Солнца вокруг своей оси (табличные данные см. в Приложении 1).

Строение недр планет зонной группы
Каково строение недр планет? Наиболее изученной является Земля, поэтому естественно начать с описания недр Земли. По аналогии с Землей разрабатываются модели строения ПЗГ. Внутреннее строение недр

Химический состав Земли
Химический состав коры изучается непосредственно, информацию о составе недр Земли получают опять же с помощью сейсмических волн. Как? По зависимости r(r), а также упругих свойств среды от ра

Возраст Земли
Возраст Земли - это очень важный параметр. Знание его позволяет, в частности, сделать выбор между различными моделями эволюции Вселенной. Но как установить возраст Земли? Идея его определе

Внутреннее строение планет-гигантов
Как уже говорилось, изучать непосредственно недра планет-гигантов (ПГ) не представляется возможным. Основную роль в их исследовании играют теоретические методы, основанные на некоторых общих данных

Окраина солнечной системы
Что находится за пределами орбиты Плутона? Возможно, за пределами орбиты Плутона располагаются еще планеты. Так, в 1992 и 1993 гг. обнаружены еще две планеты, размеры которых оказались достаточно м

Температура поверхности Солнца
Температура излучающего тела определяется с помощью законов излучения (см. Приложение 1). Первый метод заключается в следующем. Получаем спектр излучающего тела. Затем, варьируя T в формуле

Условия в недрах Солнца
Звезды, как и планеты, находятся в состоянии гидростатического равновесия. Чтобы убедиться в том, насколько точно выполняется это утверждение, сделаем следующие оценки. Предположим вначале, что гра


В чем заключается проблема? Оценим запас тепловой энергии Солнца ETO. Очевидно, что


Чтобы подойти к решению поставленного вопроса, оценим запас энергии Солнца. Для этого необходимо вспомнить известное

Активность Солнца
Как уже говорилось, глобальные характеристики Солнца практически не менялись на протяжении нескольких миллиардов лет. Однако локальные могут претерпевать временные флуктуации. Общей причиной зарожд

Звездная величина
Приемная аппаратура регистрирует освещенность Em , создаваемую той или иной звездой на Земле, т.е. количество энергии, падающей в единицу времени на единичную площадку в некотором

Спектры нормальных звезд
Спектр звезды, т.е. распределение энергии по длинам волн является наиболее полной характеристикой ее излучения. Если известен спектр звезды, то путем интегрирования по длине волны рассчитывается ос

Диаграмма спектр - светимость
В начале нашего века Герцшпрунг и Рессел установили связь между дифференциальными и интегральными характеристиками звезд, построив по результатам наблюдений диаграмму спектр - светимость (рис. 27;

Определение расстояний до удаленных звезд
Отвлечемся на короткое время от изучения строения звезд и обратимся к проблеме расстояний. Расстояния до удаленных звезд можно определить с помощью диаграммы Г-Р. В самом деле, спектральный класс з

Определение радиусов и масс звезд
Для понимания диаграммы Г-Р очень важным является вопрос о радиусах и массах звезд. Непосредственно измерить радиусы звезд не удается, т.к. из-за громадных расстояний их видимые размеры ок

Феноменологическая связь между параметрами для звезд ГП
После того, как были определены из наблюдений радиусы и массы звезд, встал вопрос: существует ли связь между светимостью звезды, ее массой и радиусом? Оказалось, что такая связь действительно сущес

Качественное рассмотрение проблемы
Выше получена связь между различными параметрами звезд на основе эмпирических данных. Поставим теперь такой вопрос: каковы модели строения звезд различных типов? Следует сразу оговориться: ответить

Математическая формулировка проблемы
Сформулируем уравнения, описывающие внутреннее строение звезд. Уравнение равновесия (2.3): . (4.13)

Применение методов подобия
Уравнения равновесия звезды для заданного химического состава, конкретного типа ТЯР и механизма переноса энергии можно решить численно с помощью компьютеров, и тем самым рассчитать структуру звезд

Внутреннее строение звезд
Звезда является весьма сложным природным объектом. Поэтому, как уже говорилось выше, рассчитать в деталях ее структуру можно, лишь привлекая компьютерные методы. Однако и в этом случае приходится с

Белые карлики
Задача №33. Из соображений подобия найти качественную связь между радиусом R u массой. MS звезды, вещество которой подчиняется уравнению состояния

Эволюция звезд
Проблема звездной эволюции принадлежит к числу фундаментальных проблем. Решалось она в течение нескольких десятилетий. Были и неправильные пути. Так, наличие ГП на диаграмме ГР наталкивало на мысль

Изохроны. Определение возрастов шаровых скоплений
Из рис. 42 видно, что положение той или иной звезды на диаграмме Г-Р определяется ее массой и временем, прошедшим от момента, когда звезда зажглась (на самом деле есть и другие факторы, влияющие на

Особенности эволюции тесных двойных звезд
Интерес к проблеме двойных звезд очень велик. Исследования их дают наиболее надежную информацию о массах и радиусах звезд, а также дополнительные сведения, которые позволяют более глубоко проверить

Физически переменные звезды
Задача №40. Из соображений размерности установить связь между периодом пульсации звезды и ее средней плотностью. Указание: независимыми размерностными константами, которые

Заключительные этапы эволюции звезд
Финал звездной эволюции определяется рядом факторов: массой звезды, ее вращением, магнитным полем, входит ли звезда в состав тесной двойной системы или нет, начальным химическим составом. В дальней

Белые карлики
Сама структура красного гиганта - вырожденное ядро в центре и раздувающаяся оболочка - подсказывает, как рождается белый карлик. Если звезда сбросит оболочку, то остаток будет иметь параметры белог

Сверхновые звезды
Задача №42. Из соображений размерности найти закон расширения оболочки сверхновой. Указание: считать, что расширение оболочки, есть следств

Нейтронные звезды
Задача №45.Оценить критические значения массы и радиуса звезды вещество которой полностью состоит из нейтронов. Указания: 1) принять, что п

Рентгеновские пульсары
Выше речь ила о радиопульсарах. Известны также рентгеновские пульсары (РП). То есть объекты, излучающие строго периодические импульсы в рентгеновском диапазоне. Запись излучения одного из них приве

Черные дыры
Задача №50.Рассчитать радиус rg звезды массы M, при котором свет не может от нее оторваться (Дж. Мичел, П. Лаплас). Оценить r

Случились вместе два Астронома в пиру
И спорили весьма между собой в жару.
Один твердил: земля, вертясь, вкруг Солнца ходит;
Другой, что Солнце все с собой планеты водит:
Один Коперник был, другой слыл Птолемей.
Тут повар спор решил усмешкою своей.
Хозяин спрашивал: “ ты звезд теченье знаешь?
Скажи, как ты о сем сомненье рассуждаешь?”
Он дал такой ответ: « Что в том Коперник прав
Я правду докажу, на Солнце не бывав.
Кто видел простака из поваров такого,
Который бы вертел очаг кругом жаркого?”
М. Ломоносов

Урок 2/8

Тема: Развитие представлений о Солнечной системе.

Цель: Познакомить учащихся со становлением представлений человечества о строении Солнечной системы, геоцентрической и гелиоцентрической системах. Объяснение петлеобразного движения планет.

Задачи :
1. Обучающая : Продолжить начатое в курсе истории формирование представлений о геоцентрической и гелиоцентрической системах мира и ввести их понятия.
2. Воспитывающая : На примере борьбы за гелиоцентрическое мировоззрение показать несовместимость науки и религии. Использовать примеры подвижнических судеб Дж. Бруно и Г. Галилея для формирования высоких нравственных представлений у учащихся. Содействуя эстетическому воспитанию учащихся, сделать акцент на простоту и красоту гелиоцентрической системы мира.
3. Развивающая : показать, как с позиций гелиоцентризма естественным образом было объяснено петлеобразное движение планет и получен простой метод определения относительных расстояний планет от Солнца. Для развития мышления учащихся и их познавательных интересов нужно, во-первых, использовать проблемное изложение материала (показав, что совершенствование гелиоцентрической системы привело ее к очень громоздкой схеме, которая все-таки позволяла с известной степенью точности предвычислять условия видимости планет, но нуждалась в дальнейшем усложнении), и, во-вторых, дать возможность изучить петлеобразное движение планет.

Знать:
1-й уровень (стандарт)
2-й уровень - понятие геоцентрической и гелиоцентрической системы строения мира.
Уметь:
1-й уровень (стандарт) - находить вид конфигурации и решать простые задачи с использованием синодического уравнения.
2-й уровень - находить вид конфигурации не только на чертежах, но и с помощью CD- "Red Shift 5.1", решать задачи с использованием синодического уравнения.

Оборудование: Таблица “Солнечная система”, к/ф “Планетная система”, “Астрономия и мировоззрение”. ПКЗН. CD- "Red Shift 5.1"(принцип нахождение небесного объекта в заданный момент времени). Демонстрация и комментирование диафильмов «Борьба за становление научного мировоззрения в астрономии» (I и II фрагменты) и «Развитие представлений о Вселенной». Фильм "Астрономия" (ч.1, фр. 2 "Самая древняя наука")

Межпредметная связь : Представления о Земле в Древнем мире и Средние века (история, 5-6 кл). Солнечная система, ее состав; планеты, метеоры, метеориты (природоведение, 5 кл). Борьба церкви против передовой науки (история, 6 кл).

Ход урока:

1. Повторение материала (8-10мин).
А) Вопросы:

  1. Конфигурация планет.
  2. Состав Солнечной системы.
  3. Решение задачи №8 (стр. 35). [1/S=1/Т - 1/Т з , отсюда Т= (Т з. S)/(S+Т з)= (1 . 1,6)/(1,6+1)= 224,7 d ]
  4. Решение задачи №9 (стр. 35). [1/S=1/Т з - 1/Т , отсюда S=(1 . 12)/(12-1)=1,09 года]
  5. "Red Shift 5.1" - найти планету на сегодня и дать характеристику ее видимости, координат, удаленности (можно несколько учеников, указав конкретную планету - желательно письменно, чтобы не отнимать времени на уроке).
  6. "Red Shift 5.1" - когда будет ближайшее противостояние, соединение планет: Марса, Юпитера? [противостояние: Марса - 24.12.2007г, 30.01.2010г; Юпитера - 14.04.2008г, 9.07.2008г, 9.10.2008г, соединение: Марс - 5.12.2008г, ; Юпитер - 23.12.2007г, 24.01.2009г ]

Б) По карточкам:

К-1 1. Период обращения Сатурна вокруг Солнца около 30 лет. Найти промежуток времени между его противостоянием. [1/S=1/Т з - 1/Т , отсюда S=(1 . 30)/(30-1)=1,03 года]
2. Указать вид конфигурации в положении I, II, VIII. [противостояние, нижнее соединение, западная элонгация]
3. Используя "Red Shift 5.1" нарисуйте расположение планет и Солнца в данный момент времени.
К-2 1. Найти период обращение Марса вокруг Солнца, если есть противостояние повторяется через 2,1 года. [1/S=1/Т з - 1/Т , отсюда Т= (Т з. S)/(S- Т з )= (1 . 2,1)/(2,1-1)=1,9лет]
2. Указать вид конфигурации в положении V, III, VII. [восточная элонгация, верхнее соединение, восточная квадратура]
3. Используя "Red Shift 5.1" определите угловое удаление от Полярной звезд ковша Большой Медведицы и изобразите в масштабе на рисунке.
К-3 1. Чему равен период обращение Юпитера вокруг Солнца, если его соединение повторяется через 1,1года. [1/S=1/Т з - 1/Т , отсюда Т= (Т з. S)/(S-Т з )= (1 . 1,1)/(1,1-1)=11 лет]
2. Указать вид конфигурации в положении IV, VI, II. [верхнее соединение, западная квадратура, нижнее соединение]
3. Используя "Red Shift 5.1" определите координаты Солнца сейчас и через 12 часов и изобразите в масштабе на рисунке (используя угловое удаление от Полярной). В каком созвездии Солнце находится сейчас и будет через 12 часов.
К-4 1. Период обращение Венеры вокруг Солнца составляет 224,7 дней, Найти промежуток времени между её соединениями. [1/S=1/Т - 1/Т з , отсюда S=(365,25 . 224,7)/(365,25-224,7)=583,9 d ]
2. Указать вид конфигурации в положении VI, V, III. [западная квадратура, восточная элонгация, верхнее соединение]
3. Используя "Red Shift 5.1" определите координаты Солнца сейчас и изобразите положение его на рисунке через 6, 12, 18 часов. Каковы будут его координаты и в каких созвездиях Солнце будет находиться?

В) Остальные:

  1. Синодический период некоторой малой планеты 730,5 дней. Найдите звездный период ее обращения вокруг Солнца. {730,5 дней или 2 года}
  2. Через какие промежутки времени встречаются на циферблате минутная и часовая стрелки? {1 1 / 11 ч}
  3. Нарисуйте, как будут располагаться на своих орбитах планеты: Венера - в нижнем соединении, Марс - в противостоянии, Сатурн - западная квадратура, Меркурий -восточная элонгация.
  4. Оцените примерно сколько времени может наблюдаться и когда (утром или вечером) Венера, если она удалена к востоку от Солнца на 45 о. {вечером, около 3 часов, т.к 45 о /15 о =3}

2. Новый материал (20мин)

Первичное представление окружающего мира :
Первые высеченные в камне звездные карты были созданы 32-35 тысяч лет назад. Знание созвездий и положений некоторых звезд обеспечивало первобытным людям ориентацию на местности и приблизительное определение времени ночью. Более чем за 2000 лет до НЭ люди заметили, что некоторые звезды перемещаются по небу - их позже греки назвали “блуждающими” - планетами. Это послужило основой для создание первых наивных представлений об окружающем нас мире (“Астрономия и мировоззрение” или кадры другого диафильма).
Фалес Милетский (624-547 гг. до н.э.) самостоятельно разработал теорию солнечных и лунных затмений, открыл сарос. Об истинной (сферической) форме Земли древнегреческие астрономы догадались на основе наблюдений формы земной тени во время лунных затмений.
Анаксимандр (610-547 гг. до н.э.) учил о бесчисленном множестве непрерывно рождающихся и гибнущих миров в замкнутой шарообразной Вселенной, центром которой является Земля; ему приписывалось изобретение небесной сферы, некоторых других астрономических инструментов и первых географических карт.
Пифагор (570-500 гг. до н.э.) первым назвал Вселенную Космосом, подчеркивая ее упорядоченность, соразмерность, гармоничность, пропорциональность, красоту. Земля имеет форму шара, потому что шар наиболее соразмерен из всех тел. Cчитал что Земля находится во Вселенной без всякой опоры, звездная сфера совершает полный оборот в течение дня и ночи и впервые высказал предположение, что вечерняя и утренняя звезда есть одно и то же тело (Венера). Считал что звезды находятся ближе планет.
Предлагает пироцентрическую схему строения мира = В центре священный огонь, а вокруг прозрачные сферы, входящие друг в друга на которых закреплена Земля, Луна и Солнце со звездами, затем планеты. Сферы, вращаясь с востока на запад и подчиняясь определенным математическим соотношениям. Расстояния до небесных светил не могут быть произвольными, они должны соответствовать гармоническому аккорду. Эта "музыка небесных сфер" может быть выражена математически. Чем дальше сфера от Земли, тем больше скорость и выше издаваемый тон.
Анаксагор (500-428 гг. г. до н.э.) предполагал, что Солнце - кусок раскаленного железа; Луна - холодное, отражающее свет тело; отрицал существование небесных сфер; самостоятельно дал объяснение солнечным и лунным затмениям.
Демокрит (460-370 гг. до н.э.) считал материю состоящей из мельчайших неделимых частиц - атомов и пустого пространства, в котором они движутся; Вселенную - вечной и бесконечной в пространстве; Млечный Путь состоящим из множества неразличимых глазом далеких звезд; звезды - далекими солнцами; Луну - похожей на Землю, с горами, морями, долинами... "Согласно Демокриту, миров бесконечно много и они различных размеров. В одних нет ни Луны, ни Солнца, в других они есть, но имеют значительно большие размеры. Лун и солнц может быть больше, чем в нашем мире. Расстояния между мирами различны, одни больше, другие меньше. В одно и то же время одни миры возникают, а другие умирают, одни уже растут, а другие достигли расцвета и находятся на краю гибели. Когда миры сталкиваются между собой, они разрушаются. На некоторых совсем нет влаги, а также животных и растений. Наш мир находится в самом расцвете" (Ипполит "Опровержение всякой ереси", 220 г. н.э.)
Евдокс (408-355 гг. до н.э.) - один из крупнейших математиков и географов древности; разработал теорию движения планет и первую из геоцентрических систем мира. Он подбирал комбинацию из нескольких вложенных одна в другую сфер, причём полюса каждой из них были последовательно закреплены на предыдущей. 27 сфер, из них одна для неподвижных звёзд, вращаются равномерно вокруг различных осей и расположены одна внутри другой, к которым прикреплены неподвижные небесные тела.
Архимед (283-312 гг. до н.э.) впервые попытался определить размеры Вселенной. Считая Вселенную шаром, ограниченным сферой неподвижных звезд, а диаметр Солнца в 1000 раз меньшим, он вычислил, что Вселенная может вмещать 10 63 песчинок.
Гиппарх (190-125 гг. до н.э.) "более, чем кто-либо доказал родство человека со звездами...он определил места и яркость многих звезд, чтобы можно было разобрать, не исчезают ли они, не появляются ли вновь, не движутся ли они, меняются ли они в яркости" (Плиний Старший). Гиппарх был создателем сферической геометрии; ввел сетку координат из меридианов и параллелей, позволявших определять географические координаты местности; составил звездный каталог, включавший 850 звезд, распределенные по 48 созвездиям; разделил звезды по блеску на 6 категорий - звездных величин; открыл прецессию; изучал движение Луны и планет; повторно измерил расстояние до Луны и Солнца и разработал одну из геоцентрических систем мира.

Геоцентрическая система строения мира (от Аристотеля до Птолемея).


По теории Птолемея:
1) Земля неподвижна и находится в центре мира;
2) планеты вращаются по строго круговым орбитам;
3) движение планет равномерно.
Первая научно обоснованная теория строения мира была разработана (384-322) и опубликована в 355г до НЭ в книге “О небе”, обобщив все знания предшественников и основываясь на умозаключениях, которые в то время не могли быть проверены. Развив более подробно учение Платона, переняв у него вращающиеся хрустальные сферы, рассчитав радиусы сфер, введя сферу комет (считал их всего лишь земным испарением, самовозгорающиеся высоко над Землей и не имеющие никакого отношения к небесным телам), как подлунную, взяв его название планет по именам богов: Гермес - Меркурий, Афродита - Венера, Арес - Марс, Зевс - Юпитер, Кронос - Сатурн. Признавая шарообразность Земли, Луны и небесных тел, отказывается от движения Земли и ставит ее в центр, так как считал, что звезды должны были бы описывать круги, а не находиться на месте (что было доказано лишь в 18 веке). Система получила название геоцентрической (Гея - Земля).
С развитием астрономии и получении более точных знаний о движении планет, система была доработана Гиппархом и окончательно кинематически разработана к 150г НЭ александрийским астрономом (87-165) в сочинении, состоящем из 13 книг “Великое математическое построение астрономии” (Альмагест). Для объяснения движения планет, применив систему эпициклов и деферентов, сделав их гармоническими: сложное петлеобразное движение представлялось суммой нескольких гармонических движений, выражаемых формулой:
, где где w n - круговая частота, t - время, A n - амплитуда, δ n - начальная фаза.
Эпициклическая система Птолемея была простой, универсальной, экономичной и, несмотря на свою принципиальную неверность, позволяла предвычислять небесные явления с любой степенью точности; с её помощью можно было бы решать некоторые задачи современной астрометрии, небесной механики и космонавтики. Сам Птолемей, обладая честностью настоящего ученого, делал упор на чисто прикладной характер своей работы, отказываясь рассматривать её как космологическую ввиду отсутствия явных доказательств в пользу гео- или гелиоцентрической теорий мира.

Гелиоцентрическая система строения мира (Коперника).


Идея поместить в центр Солнечной системы не Землю а Солнце принадлежит (310-230) впервые определившему расстояние до Луны, Солнца и их размеры. Но заключений и доказательств о том, что Солнце больше и вокруг движутся планеты было явно недостаточно. "Он полагает, что неподвижные звезды и Солнце не меняют свои места в пространстве, что Земля движется по окружности вокруг Солнца, находящегося в её центре" - писал Архимед. В работе "О размерах и взаимных расстояниях Солнца и Луны" Аристарх Самосский, принимая гипотезу о суточном вращении Земли, зная диаметр Земли (по Эратосфену) и считая Луну в 3 раза меньше Земли, на основе собственных наблюдений рассчитал, что Солнце - одна, ближайшая из звезд - в 20 раз дальше от Земли, нежели Луна (на самом деле - в 400 раз) и больше Земли по объему в 200-300 раз.
Только в эпоху Возрождения польский ученый (1473-1543) обосновал гелиоцентрическую систему строения мира к 1539г в книге “Об обращении небесных сфер” (1543г), объяснив суточное движение светил вращением Земли и петлеобразное движение планет их обращением вокруг Солнца, рассчитав расстояния и периоды обращения планет. Однако сферу неподвижных звезд он оставил, отодвинув её в 1000 раз дальше, чем Солнце.

Подтверждение гелиоцентрической системы мира.

Доказательство гелиоцентрическая система получила в трудах Галилео Галилея (1564-1642) и Иоганна Кеплера (1571-1630).
- открыл смену фаз Венеры, доказывающую ее вращение вокруг Солнца. Открыл 4 спутника Юпитера, доказав что не только Земля (Солнце) может быть центром. Открыл горы на Луне и определил их высоту - значит нет существенного различия между земным и небесным. Наблюдал пятна на Солнце и сделал вывод о его вращении. Разложив Млечный путь в звезды делает вывод о различности расстояний до звезд и что никакой “сферы неподвижных звезд” не существует.
Казнь Джордано Бруно (1548-1600), официальный запрет церковью учения Коперника, суд над Галилеем не могли остановить распространение коперниканства.
В Австрии Иоганн Кеплер открывает движение планет, в Англии Исаак Ньютон (1643-1727) опубликовывает закон всемирного тяготения, в России Михайло Васильевич Ломоносов (1711-1765) не только высмеивает идеи геоцентризма в стихах, но и открывает атмосферу на Венере, защищает идею множества обитаемых миров.

III. Закрепление материала (8 мин).

  1. Разбор задач решавшихся на уроке остальными учащимися класса (В) тех, что вызвали затруднение.
  2. Решение .

Итог:
1) В чем отличие геоцентрической от гелиоцентрической системы строения мира?
2) Каких видных ученых-астрономов вы помните?
3) Оценки

Домашнее задание: §8; вопросы и задания стр. 40, стр. 52 п.1-5. Рассказ об ученом - астрономе (любом из перечисленных на уроке). Не решившим с/р №4 доделать. Можно дать составить презентацию о каком либо ученом с данного урока, открытиях Г. Галилея, об одной из систем строения мира и т.д.

Урок оформили члены кружка "Интернет-технологии" - Прытков Денис (10кл) и Березуцкая Аня (11кл)

Изменен 21.10.2009 года

«Планетарий» 410,05 мб Ресурс позволяет установить на компьютер учителя или учащегося полную версию инновационного учебно-методического комплекса "Планетарий". "Планетарий" - подборка тематических статей - предназначены для использования учителями и учащимися на уроках физики, астрономии или естествознания в 10-11 классах. При установке комплекса рекомендуется использовать только английские буквы в именах папок.
Демонстрационные материалы 13,08 мб Ресурс представляет собой демонстрационные материалы инновационного учебно-методического комплекса "Планетарий".
Планетарий 2,67 мб Данный ресурс представляет собой интерактивную модель "Планетарий", которая позволяет изучать звездное небо посредством работы с данной моделью. Для полноценного использования ресурса необходимо установить Java Plug-in
Урок Тема урока Разработки уроков в коллекции ЦОР Статистическая графика из ЦОР
Урок 8 Развитие представлений о Солнечной системе Тема 15. Эволюция представлений о системе мира 670,7 кб Планеты Солнечной системы 446,6 кб
Гелиоцентрическая система мира Коперника 138,3 кб
Геоцентрическая система Птолемея 139 кб
Деферент и эпицикл 128,2 кб

Общая часть

Предмет

Класс

Тема урока

астрономия

Развитие представлений о строении мира

Используемый учебник

Название

Класс

Астрономия

Б.А. Воронцов-Вельяминов, Е.К. Страут

Планируемые образовательные результаты

Предметные

Метапредметные

Личностные

воспроизводить исторические сведения о становлении и развитии гелиоцентрической системы мира, объяснять петлеобразное движение планет с использованием эпициклов и дифферентов.

устанавливать причинно-следственные связи смены представлений о строении мира; характеризовать вклад ученых в становление астрономической картины мира.

высказывать убежденность в возможности познания системы мира.

ТСО (оборудование)

Средства ИКТ (ЭФУ, программы, приложения, ресурсы сети Интернет)

Таблица “Солнечная система”, к/ф "Астрономия" (ч.1, фр. 2 "Самая древняя наука")

Презентация к уроку

Организационная структура урока

Этап урока

Образовательные задачи (планируемые результаты)

Используемые ресурсы, в т.ч. ЭФУ (для ЭФУ укажите названия конкретных объектов и страницу)

Деятельность учителя

Деятельность обучающихся

длит. этапа (мин)

1 этап Инициация

Цель: Создание позитивной и комфортной атмосферы, настрой на рабочий лад, формирование команд.

Формируется коммуникативная компетентность - способность вступать в общение, устанавливать контакты между участниками.

Коммуникативные УУД - умение вступать в общение, поддерживать его, что обеспечивает эффективность взаимодействия и работы учащихся в создаваемых группах.

Используется метод «Отправляемся в путешествие»

Здравствуйте, ребята. Сегодня мы с вами проводим необычный урок. Любой человек, невзирая на возраст, любит путешествовать. Вот и я вам предлагаю совершить путешествие. Правда не настоящее, а виртуальное. И это путешествие в прошлое. Средством передвижения будет машина времени.

Эпиграфам к нашему уроку я взяла высказывание французского писателя Антуана Сент-Экзюпери : «У каждого человека свои звезды. Одним тем, кто странствует, - они указывают путь. Для других это просто огоньки. Для ученых они как задача, которую надо решить».

Перед вами находится книга отзывов и предложений. Составьте лозунг или девиз, который характеризует вашу команду. Запишите это в книгу отзывов и предложений.

При входе в класс каждый ученик выбирает карточку и подходит к тому, столу на котором находится трафаретка с данной карточкой (заготавливаются заранее) - это позволяет сформировать группы. На каждом столе находится книга отзывов. Объединившись, ученики должны будут придумать приветствие, цитату, девиз или лозунг своей работы на уроке и записать его в книгу отзывов.

2 мин

2 этап Погружение в тему

Цель: Обеспечение мотивации обучения и осмысленности процесса обучения

осуществлять анализ объектов с выделением существенных и несущественных признаков

Личностные УУД: ориентация на содержательные моменты учебной задачи

Познавательные УУД: активизация мыслительной деятельности обучающихся, включение логического мышления.

Необходимые материалы: презентация со слайдами, на которых изображены вопросы.

Технология проведения:

Во время демонстрации слайдов группы отвечают на вопросы, зарабатывая баллы Отвечает та команда, которая первой подняла сигнальную карточку. Если ответ неправильный, то ход переходит следующей команде. Команда, которая заработала больше всего баллов получает билет 1-го класса (это дает право первыми выдвинуться в путешествие и право на две ошибки), другие команды получают билеты 2-го класса (право на 1 ошибку) и 3-го класса (ошибаться при ответах нельзя) .

Чтобы наше путешествие началось нам надо приобрести билеты. Для этого вам надо ответить на вопросы (слайды 3-9):

Период обращения Сатурна вокруг Солнца около 30 лет. Найти промежуток времени между его противостоянием. [ 1/S=1/Т з - 1/Т , отсюда S=(1 . 30)/(30-1)=1,03 года]

Указать вид конфигурации в положении I, II, VIII. [противостояние, нижнее соединение, западная элонгация]

Найти период обращение Марса вокруг Солнца, если есть противостояние повторяется через 2,1 года. [ 1/S=1/Т з - 1/Т , отсюда Т= (Т з . S)/(S- Т з )= (1 . 2,1)/(2,1-1)=1,9лет]

Указать вид конфигурации в положении V, III, VII. [восточная элонгация, верхнее соединение, восточная квадратура]

Чему равен период обращение Юпитера вокруг Солнца, если его соединение повторяется через 1,1года. [ 1/S=1/Т з - 1/Т , отсюда Т= (Т з . S)/(S-Т з )= (1 . 1,1)/(1,1-1)=11 лет]

Указать вид конфигурации в положении IV, VI, II. [верхнее соединение, западная квадратура, нижнее соединение]

Указать вид конфигурации в положении VI, V, III. [западная квадратура, восточная элонгация, верхнее соединение]

Во время демонстрации слайдов группы отвечают на вопросы, зарабатывая баллы Цена вопроса 2 балла. Отвечает та команда, которая первой подняла сигнальную карточку. Если ответ неправильный, то ход переходит следующей команде. Команда, которая заработала больше всего баллов получает билет 1-го класса (это дает право первыми выдвинуться в путешествие и право на две ошибки), другие команды получают билеты 2-го класса (право на 1 ошибку) и 3-го класса (ошибаться при ответах нельзя) .

7 мин

3 этап Определение ожиданий и опасений

Цель: Концентрация внимания, обеспечение ответственности за результат обучения, создание психологически-комфортной обстановки

Развивать способность понимать окружающий мир, ориентироваться в нем, осознавать свою роль и предназначение.

Личностные - участники не только делятся своими желаниями, но и раскрывают мотивационную сферу своей личности, свои склонности, интересы; идентифицируют себя по отношению к профессии

Метод «Билет»

Готовы ли вы к путешествию и новым познаниям?

(Учитель вручает каждому участнику входной билет на транспортное средство)

Билет состоит из двух частей. На одной части ученики пишут свои ожидания от предстоящего путешествия, а на другой (зона контроля) - свои опасения. Учитель отрывает область контроля (опасения) и забирает себе, а часть билета, на которой написаны ожидания, остается у ученика.

2 мин

4 этап. Проработка содержания темы.

Цель: Обобщение и систематизация знаний, развитие знаний, умений и навыков по данной теме

Отрабатывать способность применять ранее полученные знания.

Познавательные УУД :

Формулирование гипотез и предположений,

- умение применять полученные ранее знания

Умение выбора и аргументации своей позиции.

Коммуникативные УУД : умение корректно защищать свою точку зрения, умение толерантно относиться к мнению других.

Личностные УУД : считаться с мнением другого человека; проявлять терпение и доброжелательность, доверие к собеседнику.

Регулятивные УУД : оценивать весомость приводимых рассуждений

Презентация

Учитель обращается к детям:

Чтобы ничего не упустить в путешествии, мы все увиденное и услышанное будем фиксировать в маршрутные листы. (В маршрутных листах группы учащиеся оформляют задания, оценивают выполнение и в конце урока оценивается успешность продвижения группы ). На каждой станции вы выполняете предложенные задания и набираете баллы.

И так, путешествие началось и первая станция - это

станция «Заморочки из бочки».

Станция «Кинотеатр»

Учитель. Давайте просмотрим сейчас отрывок из фильма. И попытаемся понять тему нашего урока, чтобы попасть на станцию «Неизведанная»

Учитель. Первичное представление окружающего мира:
Первые высеченные в камне звездные карты были созданы 32-35 тысяч лет назад. Знание созвездий и положений некоторых звезд обеспечивало первобытным людям ориентацию на местности и приблизительное определение времени ночью. Более чем за 2000 лет до НЭ люди заметили, что некоторые звезды перемещаются по небу - их позже греки назвали “блуждающими” - планетами. Это послужило основой для создание первых наивных представлений об окружающем нас мире

Станция «Неизведанная» ( слайды 16-21 )

Приложение 1

Заполняют маршрутные листы для каждой группы.

Маршрутный лист группы № 1

Станция

Выполнение задания

Результат

Заморочки из бочки

Кинотеатр

Неизведанная

Применение

Книга отзывов и предложений

Технология проведения : На трех столах (столы можно пронумеровать) лежат маршрутные листы, у учителя листы заданиями по станциям, инструкции к выполнению заданий.

Отвечают на вопросы (слайды 10-15)

Просмотр фильма

Слушают лекцию и включаются в беседу

23 мин

5 этап Эмоциональная разрядка

(разминка)

Цель: Снятие напряжения и усталости, расслабление или восстановление энергии

Развивать умение соотносить общеучебные знания с реальными познаваемыми объектами, формирование логического мышления.

овладение креативными навыками продуктивной деятельности: выдвижение предположений, их анализ

Метод Станция "Применение"

Цель метода: снижение интенсивности работы,

Технология проведения:

Каждой группе выдается карточка с видом созвездий. Команде нужно представить это созвездие не произнося ни слова. Другим группам необходимо отгадать, что за созвездие изображено на карточке.

Учитель. Впереди у нас станция «Применение».

В литературе мы встречаем различные описания природы, вспомним Тютчева:

Не то, что мните вы природа:

не слепок, не бездушный лик-

в ней есть душа, в ней есть свобода,

в ней есть любовь, в ней есть язык…

Скажите, каким языком пользуется физика для описания законов природы? Верно математическим языком. Но Вам сейчас придется использовать язык жестов, чтобы показать созвездие. Вы получили карточки с различными созвездиями. Каждой команде нужно представить это созвездие, не произнося ни слова. Другим группам необходимо отгадать, что за созвездие изображено на карточке

Выполняют задания

3 мин

6 этап

Рефлексия

Цель: Получение эмоциональной и содержательной оценки процесса и результатов обучения

Развивать умение проводить анализ, рефлексию, самооценку учебно-познавательной деятельности.

Станция "Книга отзывов и предложений"

Учитель. Впереди у нас станция «Книга отзывов и предложений», т.е - конечная.

Перед вами книга "Отзывов и предложений" фирмы, которая организовала вам это путешествие. Вспомните еще раз урок, себя, свои эмоции и ощущения. Что вас удивило? Что заставило задуматься? А может, вы с чем-то были не согласны? А может, вы в чем-то отличились?

Задание: необходимо заполнить страничку данной книги.

Домашнее задание (слайд 22)

Каждый учащийся в данной книге, в спомнив еще раз урок, себя, свои эмоции и ощущения, выражает их любым способом (стихи, цитата или просто смайлик)

Подведение итогов соревнования ученики проводят самостоятельно по итоговой таблице на доске. Определяется уровень настроения на конец работы.

3 мин

Приложение 1

Геоцентрическая система строения мира (от Аристотеля до Птолемея).

Первая научно обоснованная теория строения мира была разработана Аристотелем и опубликована в 355г до НЭ в книге “О небе”. Признавая шарообразность Земли, Луны и небесных тел, отказывается от движения Земли и ставит ее в центр, так как считал, что звезды должны были бы описывать круги, а не находиться на месте (что было доказано лишь в 18 веке). Система получила название геоцентрической (Гея - Земля).

С развитием астрономии и получении более точных знаний о движении планет, система была доработана Гиппархом и окончательно кинематически разработана к 150г НЭ александрийским астрономом Клавдием Птолемеем (87-165) в сочинении, состоящем из 13 книг “Великое математическое построение астрономии” (Альмагест). Для объяснения движения планет, применив систему эпициклов и деферентов.

По теории Птолемея:

Земля неподвижна и находится в центре мира;

планеты вращаются по строго круговым орбитам;

движение планет равномерно.

Гелиоцентрическая система строения мира (Коперника).

Идея поместить в центр Солнечной системы не Землю а Солнце принадлежит Аристарху Самосскому (310-230) впервые определившему расстояние до Луны, Солнца и их размеры. Но заключений и доказательств о том, что Солнце больше и вокруг движутся планеты было явно недостаточно. "Он полагает, что неподвижные звезды и Солнце не меняют свои места в пространстве, что Земля движется по окружности вокруг Солнца, находящегося в её центре" - писал Архимед. В работе "О размерах и взаимных расстояниях Солнца и Луны" Аристарх Самосский, принимая гипотезу о суточном вращении Земли, зная диаметр Земли (по Эратосфену) и считая Луну в 3 раза меньше Земли, на основе собственных наблюдений рассчитал, что Солнце - одна, ближайшая из звезд - в 20 раз дальше от Земли, нежели Луна (на самом деле - в 400 раз) и больше Земли по объему в 200-300 раз.

Только в эпоху Возрождения польский ученый Николай Коперник (1473-1543) обосновал гелиоцентрическую систему строения мира к 1539г в книге “Об обращении небесных сфер” (1543г), объяснив суточное движение светил вращением Земли и петлеобразное движение планет их обращением вокруг Солнца, рассчитав расстояния и периоды обращения планет. Однако сферу неподвижных звезд он оставил, отодвинув её в 1000 раз дальше, чем Солнце.

Подтверждение гелиоцентрической системы мира.

В трудах Галилео Галилея Галилей - открыл смену фаз Венеры, доказывающую ее вращение вокруг Солнца. Открыл 4 спутника Юпитера, доказав что не только Земля может быть центром.

В трудах Иоганна Кеплера открывает движение планет.

В трудах Исаака Ньютона опубликовывает закон всемирного тяготения.

В трудах М.В. Ломоносов не только высмеивает идеи геоцентризма в стихах, но и открывшего атмосферу на Венере.

Слайд 2: По Аристотелю мир является вечным и неизменным. Отрицал вращение Земли, считал звезды и планеты связанными с вращающимися вокруг общего центра хрустальными сферами. Вселенная из 56 хрустальных сфер, самая внешняя -звездная

Рафаэль Санти. Аристотель и Платон

Слайд 3: Клавдий Птолемей. Он разработал геоцентрическую систему мира, создал теорию видимого движения Луны и пяти известных планет

Клавдий Птолемей Представление о строении Вселенной.Иллюстрация Камиля Фламмариона


Слайд 4: ГЕОЦЕНТРИЧЕСКАЯ СИСТЕМА ПТОЛЕМЕЯ Планеты обращаются вокруг неподвижной Земли. Есть дополнительные круговые движения по эпициклам

Слайд 5: Система Птолемея изложена в его главном труде «Альмагест» («Великое математическое построение астрономии в XIII книгах»)- энциклопедии астрономических знаний древних

Титульный лист Альмагеста

Слайд 6

Научная революция- закономерный периодически повторяющийся процесс, качественного перехода от одного способа познания к другому, отражающему более глубинные связи и отношения природы.

Слайд 7: Выделяют:

Коперниканскую научную революцию Ньютоновскую Дарвиновскую научную революцию

Слайд 8: Первая научная революция

Первая научная революция произошла в 16 веке. Основоположник- Николай Коперник, автор Гелиоцентрической системы Мира

Слайд 9: Причины:

Необходимость усовершенствования Птолемеевской геоцентрической системы Необходимость реформы календаря Необходимость уточнения звёздных карт

10

Слайд 10: Николай Коперник (1473-1543), великий польский астроном, создатель гелиоцентрической системы мира

11

Слайд 11: Гелиоцентрическая система мира Коперника

12

Слайд 12

В центре Вселенной неподвижное Солнце Годичное Вращение Луны и Земли вокруг Солнца Планеты движутся по круговым орбитам равномерно

13

Слайд 13

Джордано Бруно (1548-1600), подхватил революционное начинание Коперника и довел его до логического конца - до концепции множественности миров в бесконечном пространстве.

14

Слайд 14: Галилео Галилей (1564 – 1642), итальянский физик и астроном, создатель телескопа, сделавший открытия, подтвердившие учение Коперника

15

Слайд 15: В России учение Коперника смело поддержал Михайло Васильевич Ломоносов (1711-1765). При наблюдении прохождения Венеры по диску Солнца в 1761 году открыл у нее атмосферу

16

Слайд 16: Вторая научная революция

Вторая научная революция произошла в 17 веке. Связана с именами: И. Кеплера, И. Ньютона. Кеплер (1571-1630): установил 3 закона движения планет вокруг Солнца, разработал теорию солнечных и лунных затмений, способы их предсказания, уточнил расстояние между Землей и Солнцем.

17

Слайд 17: Иоганн Кеплер (1571-1630)-немецкий ученый, развив учение Коперника, открыл законы движения планет

18

Слайд 18: Законы небесной механики Кеплера:

19

Слайд 19: 1. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце

20

Слайд 20: 2. Скорость движения планеты по орбите непостоянна, она тем больше, чем ближе планета к Солнцу

21

Слайд 21: 3. Квадраты времен обращения планет вокруг Солнца относятся как кубы их среднего расстояния до него

22

Слайд 22: Исаак Ньютон (1643-1727) открыл закон всемирного тяготения и три закона классической механики

Интегральное и дифференциальное исчисление Работы по оптике, открытие спектрального состава света

23

Слайд 23: Законы Ньютона

Тело находится в состоянии покоя или прямолинейно и равномерно движется, пока на него не действует сила. Изменение количества движения пропорционально приложенной движущей силе и направлено по направлению действия этой силы. Действию всегда есть равное и противоположное противодействие.

24

Слайд 24: Закон Всемирного тяготения

Для всех планет имеет место притяжение к Солнцу и друг к другу с силой, обратно пропорциональной квадрату расстояния между ними и прямопропорциональной только их массе, независимо от других свойств тела. F тяж. = G * m 1 * m 2 / r 2

25

Слайд 25: механистическая картина мира

Все тела природы состоят из материальных частиц, жестких и обладающих весом, пренебрежимо малых размеров. Между материальными частицами действуют силы притяжения (закон всемирного тяготения Ньютона) и силы отталкивания. Материальные частицы подчиняются законам механики Ньютона. Пространство и время абсолютны, т.е. не зависят от материи.

26

Слайд 26: Третья научная революция

П роизошла в 1 9 веке. Механистическая картина мира утрачивает свое значение. Дифференциация наук. Возникают общая химия, физика, биология.

27

Слайд 27: Законы термодинамики

1. Всё тепло, получаемое телом, идёт на увеличение внутренней энергии тела и на совершение работы против внешних сил. 2. Невозможно полностью превратить тепло, отдаваемое телом, в работу. 3. Никаким естественным или искусственным способом нельзя достичь абсолютного нуля температур. Законы термодинамики

28

Слайд 28: Была разработана теория электромагнитных явлений (Майкл Фарадей, Дж. Максвелл)

29

Слайд 29: Достижения в химии

Развитие технической химии (металлургия, стеклоделие, бумага) и открытие новых химических веществ (висмут, платина, фосфор). Атомно-молекулярная теория строения вещества (М.В. Ломоносов). Теория строения химических соединений (А.М. Бутлеров), учение о валентности и химической связи. Стереохимия – теория пространственного строения органических соединений. Открытие Д.И. Менделеевым (1869) периодической системы хим.элементов и периодического закона.

30

Последний слайд презентации: Развитие представлений о строении мира: Достижения в биологии

Идея единства живой природы и единство плана строения живых существ. Концепция эволюции органического мира (Ж.Б. Ламарк) Теория эволюции (Ч. Дарвин) Клеточная теория (М. Шлейден, Т. Шванн) становление генетики (законы наследственности Г. Менделя)

Тема урока: Развитие представлений о строении мира. 11кл Цель урока: Воспроизвести исторические сведения о становлении и развитии гелиоцентрической системы мира. Раскрыть сущность каждой из теорий. Рассказать о жизни учёных, которые занимались созданием теорий о строении мира. Ход урока: 1. Орг.момент 2. Изложение нового материала: Мотивация: Мне хочется, чтобы сегодня урок наш прошёл под девизом русской пословицы: «Ученье – свет, а не ученье – тьма». Почему я такой девиз взяла вы мне объясните в конце урока. 1. Звёздное небо во все времена занимало воображение людей. Почему зажигаются звезды? Сколько их сияет в ночи? Далеко ли они от нас? Есть ли границы у звездной Вселенной? С глубокой древности человек задумывался над этими и многими другими вопросами, стремился понять и осмыслить устройство того большого мира, в котором мы живем. Прошли века и тысячелетия, прежде чем возникла и получила глубокое обоснование и развитие наука о Вселенной, раскрывшая нам удивительный порядок мироздания. Недаром еще в древней Греции Вселенную называли Космосом, а это слово первоначально означало “порядок” и “красота”. Системы мира – это представления о расположении в пространстве и движении Земли, Солнца, Луны, планет, звезд и других небесных тел. Рассмотрим вопрос о том, как развивались представления о Мироздании. 2. Наблюдения за движением Солнца, Луны, планет и звёзд люди вели с глубокой древности. На основании таких наблюдений они высказали предположение об устройстве мира. 1) Древние индусы думали, что Земля держится на четырёх слонах, которые стоят на гигантской черепахе, плавающей в океане. Первые представления о мироздании были очень наивными. На протяжении многих веков обожествлялись Луна, Солнце, планеты.

Раньше думали, что существует «твердь небесная», к которой прикреплены звезды, а Землю принимали за неподвижный центр мироздания. 2). Считается, что идею о шарообразности Земли и находится во Вселенной без всякой опоры, впервые высказал в 6 веке до н.э. древнегреческий учёный Пифагор. Аристотель (384 – 322 гг.до н.э) для доказательства 3) шарообразности Земли приводит тот факт, что во время лунных затмений край тени Земли на диске Луны всегда имеет форму дуги окружности. Причина такой формы тени в том, что Земля шарообразная. На вопрос, почему же Земля без опоры не падает вниз, отвечал, а где расположен низ? Низ там, куда падают все тела. Все тела падают по направлению к центру Земли. Центр мира совпадает с центром Земли Земле некуда падать: её центр находиться в центре мира. Планеты, Солнце, Луна и звёзды размещены на хрустальных сферах, которые вращаются вокруг Земли. Такая система мира получила название геоцентрической (по имени греческой богини Земли – Гея). Геоцентрическая система мира: В центре Вселенной находится шарообразная Земля, а вокруг Земли вращаются на хрустальных сферах звёзды, Солнце, Луна и пять планет – Меркурий, Венера, Марс, Юпитер, Сатурн. 4). Эту систему мира через 5 столетий усовершенствовал александрийский астроном Клавдий Птолемей (ок 90 – ок 160 н.э.). Он утверждал, что каждая планета равномерно движется по эпициклу – малому кругу, центр которого движется вокруг Земли по деференту – большому кругу. Тем самым ему удалось объяснить особый характер движения планет, которым они отличались от Солнца и Луны. Поэтому геоцентрическую систему мира часто называют птолемеевской системой мира. 5). Среди ученых древности выделяется смелостью своих догадок Аристарх Самосский, живший в III в. до н. э. Он первым определил расстояние до Луны и её радиус, вычислил размеры Солнца, которое, по его данным, оказалось в 300 с лишним раз больше Земли по объему. Он усомнился в том, что в центре мира находится маленькая Земля, а вокруг неё с большой скоростью обращается за сутки громадное Солнце.

Он сделал вывод: центром мира является Солнце. Он создал первую гелиоцентрическую систему мира. (от греческого «гелиос» - солнце). В наши дни Аристарха Самосского стали называть «Коперником античного мира». За попытку объяснить природные явления без участия богов Аристарха Самосского обвинили в богохульстве и изгнали из Александрии. На протяжении почти двух столетий после открытия Аристарха неправильной Самосского учёные продолжали пользоваться геоцентрической системой. 6). Революцию в научных представлениях об устройстве мира произошла после 1543 года. Польский астроном Николай Коперник 1473–1543), свою систему мира изложил в книге «О вращениях небесных сфер». Он обосновал гелиоцентрическую систему мира: В центре мира находится Солнце. Вокруг Земли движется лишь Луна. Земля является третьей по удаленности от Солнца планетой. Она обращается вокруг Солнца и вращается вокруг своей оси. На очень большом расстоянии от Солнца Коперник поместил «сферу неподвижных звезд». Но точно установить истинную форму орбит планет он не смог. Коперник показал, что суточное движение всех светил можно объяснить вращением Земли вокруг оси, а петлеобразное движение планет – тем, что все они, включая Землю, обращаются вокруг Солнца. Но учение Коперника, переносившего человека из центра мира на одну из планет Солнечной системы, получило отрицательную оценку со стороны католической церкви как противоречащее Библии. 7). последователь Коперника Джордано Бруно (1548 – 1600). Он утверждал, что во Вселенной нет и не может быть центра, что Солнце – это только центр Солнечной системы Он утверждал, что звёзды – это очень далёкие от нас солнца, что Вселенная бесконечна и миров в ней – звёзд и планет – бесчисленное множество, и наконец, что на других планетах, в других мирах тоже должна существовать жизнь. Озлобленные представители церкви предали Бруно суду инквизиции. От него потребовали отречься от своих убеждений. Он не согласился и его предали мучительной казни – сожгли живым на костре в Риме в 1600 году. 8). Последовательным учения Коперника был великий итальянский учёный Галилео Галилей, который впервые Учение Коперника поддерживал итальянский философ,

использовал подзорную трубу (телескоп) для астрономических наблюдений. Он с её помощью открыл: 1. существование гор на Луне 2. 4 спутника обращаются вокруг планеты Юпитер (подобно тому, как Луна обращается вокруг Земли) 3. Фазы у Венеры (значит Венера – шарообразное тело, которое светит отражённым солнечным светом и обращается именно вокруг Солнца, а не вокруг Земли). 4. обнаружил, что Млечный Путь – эта светящаяся полоса на звёздном небе – является скопищем множества слабых звёздочек. Это и многое другое подтвердило истинность открытия Коперника. В 1616 году ему запретили защищать и распространять учение Коперника. Но преданный науке он продолжал отстаивать передовые взгляды в науке. В 1633 году Галилея отдали под суд инквизиции. Престарелого учёного угрозами вынудили «раскаяться» и приговорили к пожизненному заключению. Только спустя 340 лет, в 1982 году папа римский Иоанн Павел II признал преследования Галилея несправедливыми и снял с него все обвинения в ереси. 9). Но это не остановило распространения учения Коперника. В Австралии немецкий учёный - Иоганн Кеплер (1511 – 1630) - развил учение Коперника, открыв законы движения планет. (три закона планетных движений, которые он вывел из наблюдений перемещений планет по небесной сфере). В Англии Исаак Ньютон (1643 – 1727) опубликовал свой знаменитый закон всемирного тяготения. В России учение Коперника смело поддерживал Михаил Васильевич Ломоносов (1711 – 1765). Он открыл атмосферу на Венере, М.В. Ломоносов смог объяснить природу полярных сияний и кометных хвостов Защищал идею о множественности обитаемых миров. Он добивался невмешательства церкви в распространения научных знаний. Материалистическая наука подтвердила правильность взглядов этих учёных. 10). Современные представления о Вселенной.

3. Закрепление темы урока: Выполните тест: 1. Кто развил представление о строении Вселенной, согласно которым многие миры являются обитаемыми? А) Бруно Б) Галилей В) Коперник Г). Кеплер С). Птолемей 2. Как называется система, в которой центральное место во Вселенной занимает Земля? А) гелиоцентрическая Б) геоцентрическая 3. Основатель гелиоцентрической системы мира? А) Аристарх Самосский Б) Николай Коперник В) Джордано Бруно 4). Греческое название Солнца? А) «Гелиос» Б) Гея В). «Ра» 5). Светлая полоса, видимая в безлунную ночь на небе? А) луч Солнца Б) Млечный путь 6.). Кто обнаружил, что Млечный путь состоит из множества слабых звёзд? А) Бруно Б) Коперник В). Галилей Г) Ломоносов 7). Как называется система мира, предложенная Н.Коперником? А) гелиоцентрическая Б) геоцентрическая 8). Учёный, открывший законы движения планет? А) Ньютон Б) Кеплер В) Ломоносов Г) Галилей 9. Учёный, открывший закон всемирного тяготения? А) Ньютон Б) Кеплер В) Ломоносов Г) Галилей Ответы: 9 правильных ответов – оценка «5» 7 – 8 правильных ответов – оценка «4» 4 – 6 правильных ответов - оценка «3» 3 и меньше правильных ответов – оценка «неуд.» 4. Рефлексия:

1. Вспомните девиз урока и дайте, пожалуйста, ему объяснение? 2. Вспомните цель урока и скажите, пожалуйста, как мы выполнили её? 3. Что нового вы узнали на уроке? 4. Вам было интересно на уроке, что именно вас заинтересовало на уроке? 5. Итог урока. Оценки 6. Спасибо за урок.