До звезд рукой подать. Как создать потолочную подсветку в виде ночного неба. Оптоволоконное освещение для бани Как соединить сломанный оптоволоконный кабель своими руками

  • 01.09.2023

Из сотен отделочных решений, связанных со световым оформлением потолка, некоторые люди склонны выбирать самые необычные из них. Оформление подсветки, выполненное в виде звездного неба – это идея, заслуживающая внимания.

naoumov Пользователь FORUMHOUSE,
Москва.

У друга в детской видел в качестве неосновной подсветки диодное небо. Имеет оно необычную геометрию и сделано с применением светодиодов различного цвета. Еще какая-то система у него, что попеременно некоторые диоды (не волнами, а в случайной последовательности) начинают медленно гаснуть. Выглядит очень красиво, да и ребенок засыпает мгновенно. Подсветка - звездное небо горит всю ночь.

Идей, связанных с реализацией столь необычного светового решения – множество. Отличаются они сложностью конструкции, ее стоимостью, дизайном, трудоемкостью и разнообразием спецэффектов. Среди наиболее распространенных конструктивных решений – звездный подвесной потолок из светодиодов и подсветка из оптоволокна. Мы рекомендуем использовать во время строительства конструкцию, которая подразумевает применение оптоволоконных нитей и светового проектора (механического или электронного). Она проще в техническом плане, дешевле и надежнее.

Electro Пользователь FORUMHOUSE

Светодиоды – это хорошо, но крайне дорогое мероприятие. Лучше применить звездное небо по принципу оптоволокна.

Необходимо понимать разницу между подсветкой и освещением. Функции потолка в виде звездного неба не должны выходить за рамки подсветки.

FDRA Пользователь FORUMHOUSE

Нецелесообразно рассматривать звездное небо в качестве основного освещения. Лучше разделять понятия освещения и подсветки. Звездное небо должно использоваться только в качестве интерьерной подсветки. Как мне кажется, это будет более правильным и бюджетным решением. Да и звездное небо останется ЗВЕЗДНЫМ, а не утыканным лампами.

Основой для создания звездной подсветки выступают натяжные потолки. Но это не означает, что звездную подсветку нельзя вмонтировать в потолок из гипсокартона (в этом случае ГКЛ послужит хорошей ширмой и надежной основой для устанавливаемых коммуникаций). Для оформления натяжных потолков подходят как тканевые полотна, так и конструкции из ПВХ.

Пленки из ПВХ при создании таких отделочных решений, как натяжной потолок с подсветкой "звезды", имеют свои преимущества. Это объясняется свойствами представленного материала: на него проще наносить декоративные покрытия в виде фотопечати или аэрографии. В идеале следует использовать матовые или сатиновые полотна, на поверхности которых можно предварительно запечатлеть всевозможные космические объекты.

Тканевые потолки примечательны тем, что рисунок на их поверхности можно использовать в качестве разметки, позволяющей безошибочно выводить оптическое волокно наружу. Изображение звездного неба наносится на такое полотно методом интерьерной печати. Самое удивительное, что на тканевый потолок можно нанести изображение реального ночного неба, сфотографированного с помощью телескопа.

Звездный потолок на основе оптоволокна

На сегодняшний день существует несколько способов, позволяющих создать потолок в виде звездного неба, с использованием оптоволокна и светового генератора. Все они подразумевают монтаж оптико-волоконных нитей и светового проектора.

Простейшим примером подсветки с использованием перечисленных компонентов является знакомый многим читателям светильник, шапка которого состоит из полупрозрачных волосков, переливающихся различными цветами. Внедрив похожие нити, имеющие различную толщину (0,5…3мм), в конструкцию натяжного потолка, можно легко сымитировать свет далеких звезд, обладающих различной яркостью. Оптоволоконные нити располагают в пространстве между основным потолком и полотном натяжного потолка. Иногда их выводят наружу, а иногда полностью скрывают под полотном.

Вывод оптоволокна сквозь полотно наружу гарантирует создателю потолка определенные преимущества. Они заключаются в том, что звезды на потолке горят намного ярче, их отчетливо видно даже в светлое время суток. Но знайте: если проектор, освещающий подобную конструкцию, будет выключен, то каждая нить (если она обрезана заподлицо с полотном) будет выглядеть темной точкой на потолке (особенно, если потолок низкий). Следовательно, если вам пришелся по душе подобный вариант, то реализовывать его следует совместно с нанесением фотопечати. Если нет такой возможности, то необходимо использовать полотна темного цвета. Следуя этим советам, вы сможете максимально замаскировать проколы в потолке.

Если вы решили не продевать оптоволокно сквозь полотно натяжного потолка, то свет «созвездий» идеально будет виден лишь в полной темноте, сияние получится слегка рассеянным. Зато целостность полотна в этом случае не пострадает, а торчащие из него нити не испортят внешний вид потолка днем. Для того чтобы свет казался ярче, следует применять оптоволокно большего диаметра (1-2 мм).

Монтаж подсветки с продеванием нитей сквозь полотно

В первую очередь, необходимо выбрать место для проектора. Не следует его полностью прятать под полотном потолка, ведь необходимость в замене лампы или в устранении какой-либо неисправности рано или поздно возникнет. Для его установки лучше всего подойдет гипсокартонная ниша, обрамляющая натяжной потолок. Можно использовать функциональный гипсокартонный короб или, на крайний случай, специальное углубление в стене. Во всех случаях необходимо обеспечить доступ к устройству посредством закрывающегося люка.

На следующем этапе крепим к поверхности базового потолка малярную сетку.

После этого нити оптоволокна следует продеть сквозь сетку в тех местах, где на плоскости натяжного потолка будут расположены светящиеся объекты.

Необходимо избегать резких перегибов оптоволокна, т. к. это может повлиять на качество подсветки.

После того как оптоволокно будет продето сквозь сетку, его свободные концы связываются, ровно обрезаются, а получившийся пучок подсоединяется к светогенератору. Подключив проектор к электрической сети, нужно убедиться в том, что все волокна светятся.

На следующем этапе можно приступать к установке натяжного потолка и к продеванию нитей сквозь его полотно. Первым делом следует закрепить один угол полотна на предварительно установленной багете. Учитывая, что полотно вначале крепится по углам помещения, необходимо прогреть его по диагонали и закрепить в двух противоположных углах. Теперь можно продевать нити, начиная с середины помещения. Сразу возьмите на заметку, что без помощника в этом деле не обойтись.

Отверстия в полотне можно делать нитями оптоволокна, обрезав их концы под 45°. Но в большинстве случаев проколы делаются обыкновенной иголкой или тонким шилом.

В каждое отверстие протягивается одна или несколько нитей (в зависимости от дизайнерской задумки). Концы нитей должны выступать на 15 см, но для удобства во время монтажных работ можно оставлять и более длинные концы.

Слишком сильно натягивать нити нельзя, лучше оставить запас их длинны. Это позволит легко вставлять и вытягивать пучок волокна из проектора, избежав многих неудобств, связанных с ограничением длины.

По мере того как нити будут продеваться сквозь поверхность полотна, следует прикреплять его оставшуюся часть к багете (не забываем, что первым делом прикрепляются углы).

После того как потолок будет смонтирован, нити, для надежности, можно закрепить на поверхности полотна с помощью прозрачного клея. Но делать это необязательно.

Оптоволокно можно оставить в виде коротких свисающих нитей.

При желании, после окончания монтажных работ нити можно обрезать. Некоторые обрезают их заподлицо с потолком, а кто-то оставляет светящиеся концы снаружи.

Для того чтобы создать эффект свечения более крупных звезд, концы оптоволокна следует ровно обрезать и запаять их края паяльником.

Монтаж подсветки без продевания нитей

В случае монтажа подсветки без продевания все элементы подсветки будут выглядеть следующим образом:

Этот вариант несколько сложнее предыдущего, т. к. требует установки фальшпотолка из гипсокартона, фанеры, пенопласта либо другого листового материала, монтируемого между базовым потолком и полотном натяжного потолка. В нем последовательно делаются отверстия, через которые и будут протягиваться нити оптоволокна. Нити (или пучки нитей) закрепляются на верхней поверхности фальшпотолка. Их нижние концы будут упираться в полотно натяжного потолка, практически не имея возможности смещаться в сторону. На концы оптоволокна можно прикрепить несколько светодиодов, имеющих различную мощность. Это позволит создать эффект сияния крупных небесных тел (астероидов, комет и т. д.).

После установки фальшпотолка зафиксированные концы оптоволокна равномерно обрезаются. Это позволит им равномерно прилегать к поверхности нижнего полотна.

Создавая подсветку без продевания нитей, следует использовать полотна с максимальной светопропускной способностью.

Звездная подсветка с кристаллами Сваровски

Если считаете, что потолок вашей квартиры достоин самого лучшего оформления, есть решение, позволяющее сделать его подсветку идеальной. Мы имеем в виду хрустальные кристаллы Сваровски, способные идеально рассеивать свет от оптоволокна.

С помощью специальных армированных колец эти объекты крепятся к нижней поверхности натяжного потолка. Затем в них вставляются одна или несколько оптоволоконных нитей. Это позволяет получить несколько четких и ярких лучей, отбрасываемых в разные стороны. Благодаря кристаллам Сваровски можно создавать яркие созвездия и реализовывать не менее экстравагантные дизайнерские задумки.

Разновидности проекторов

От того, какой светогенератор используется в конструкции натяжного потолка, напрямую зависят создаваемые с его помощью эффекты. Существуют две основные разновидности проекторов, используемых для создания звездного потолка. Это механические и электронные устройства. В механических проекторах небольшой электрический двигатель вращает специальный светофильтр, который, в свою очередь, изменяет цвет светового потока. В электронных устройствах цвет регулируется с помощью светодиодов, управляемых контроллером, работающим в соответствии с заданной программой.

Несмотря на то, что механический проектор немного шумит во время работы, он способен производить интересные световые эффекты. Благодаря ему звезды на потолке могут изменять свой цвет в случайном порядке, в то время как одни светила только начинают желтеть, другие уже гаснут или, наоборот, приобретают красноватый оттенок. Габариты механического проектора больше, чем у его электронного аналога, и это следует учитывать, подбирая место для установки устройства.

StParsek Пользователь FORUMHOUSE

Нужно уточнить один момент – хаотична или нет смена цветов в конструкции светогенератора. Я думаю, меняться они будут одновременно. В этом плане проектор с механическим ченжером цветов дает более интересную картинку.

Электронные светогенераторы бесшумны, могут программироваться и способны взаимодействовать с пользователем через пульт дистанционного управления. Единственным недостатком современных электронных проекторов является одновременная смена цветов. То есть, все звезды включаются, гаснут и меняют цвета одновременно.

Самое простое решение для создания звездного потолка

Потолок в виде звездного неба можно создать, не прибегая к использованию осветительных приборов. Для этого на поверхность натяжного полотна следует нанести изображения звезд, комет и других небесных тел. После этого все светящиеся объекты можно покрыть люминесцентной краской или лаком, которые в полумраке будут создавать эффект звездного неба.

При всех достоинствах оптических волокон, для монтажа сетей их необходимо соединять. Именно сложность этого процесса для световодов из кварцевого стекла является основным сдерживающим фактором оптоволоконной технологии.

Несмотря на весь прогресс технологии последних лет, непрофессионалам доступно только соединение кабелей, не имеющих особых требований по качеству. Серьезные работы по монтажу магистралей регионального значения требуют наличия дорогостоящего оборудования и высоко квалифицированного персонала.

Но для создания междомовой разводки "последней мили" такие сложности уже не нужны. Работы доступны специалистам без серьезной подготовки (или вообще без нее), комплект технологического оборудования стоит менее $300. В сочетании с этим, огромные (не побоюсь этого слова) преимущества оптоволокна над медными кабелями при воздушных прокладках делают его очень привлекательным материалом для домашних сетей.

Рассмотрим подробнее виды и способы соединения оптических волокон. Для начала, нужно принципиально разделить сростки (неразъемные соединения), и оптические разъемы.

В сравнительно небольших сетях (до нескольких километров диаметром) сростки не желательны, и их следует избегать. Основной на сегодня способ их создания - сварка электрическим разрядом.

Принцип сварки оптического волокна.

Такое соединение надежно, долговечно, и вносит ничтожно малое затухание в оптический тракт. Но для сварки нужно весьма дорогостоящее оборудование (в районе нескольких десятков тысяч долларов), и сравнительно высокая квалификация оператора.

Обусловлено это необходимостью высокоточного совмещения концов волокон перед сваркой, и соблюдения стабильных параметров электрической дуги. Кроме этого, нужно обеспечить ровные (и перпендикулярные оси волокна) торцы (сколы) свариваемых волокон, что само по себе является достаточно сложной задачей.

Соответственно, выполнение таких работ "от случая к случаю" своими силами не рационально, и проще пользоваться услугами специалистов.

Так же подобный способ часто используется для оконечивания кабелей путем сварки волокон кабеля с небольшими отрезками гибких кабелей с уже установленными разъемами (pig tаil, буквально - поросячий хвост) . Но с распространением клеевых соединений, сварка постепенно сдает позиции при терминировании линий.

Второй способ создания неразъемных соединений - механический, или с использованием специальных соединителей (сплайсов). Первоначальное назначение этой технологии - быстрое временное соединение, используемое для восстановления работоспособности линии в случае разрыва. Со временем, на "ремонтные" сплайсы некоторые фирмы начали давать гарантию до 10 лет, и до нескольких десятков циклов соединения-разъединения. Поэтому целесообразно выделить их в отдельный способ создания неразъемных соединений.

Принцип действия сплайса достаточно прост. Волокна закрепляются в механическом кондукторе, и специальными винтами сближаются друг c другом. Для хорошего оптического контакта в месте стыка используется специальный гель с похожими на кварцевое стекло оптическими свойствами.

Несмотря на внешнюю простоту и привлекательность, способ не получил широкого распространения. Причин этому две. Во-первых, он все-таки заметно уступает по надежности и долговечности сварке, и для магистральных телекоммуникационных каналов не пригоден. Во-вторых, он обходится дороже, чем монтаж клеевых разъемов, и требует более дорогого технологического оборудования. Поэтому, он достаточно редко применяется и при монтаже локальных сетей.

Единственное, в чем эта технология не знает себе равных - это скорость выполнения работ, и не требовательность к внешним условиям. Но этого на сегодня явно не достаточно для полного завоевания рынка.

Рассмотрим разъемные соединения. Если предел дальности действия высокоскоростных электропроводных линий на основе витой пары зависит от разъемов, то в оптоволоконных системах вносимые ими дополнительные потери достаточно малы. Затухание в них оставляет около 0, 2-0, 3 дБ (или несколько процентов).

Поэтому вполне возможно создавать сети сложной топологии без использования активного оборудования, коммутируя волокна на обычных разъемах. Особенно заметны преимущества такого подхода на небольших по протяженности, но разветвленных сетях "последней мили". Очень удобно отводить по одной паре волокон на каждый дом от общей магистрали, соединяя остальные волокна в коммутационной коробке "на проход".

Что основное в разъемном соединении? Конечно, сам разъем. Основные его функции заключаются в фиксация волокна в центрирующей системе (соединителе), и защите волокна от механических и климатических воздействий.

Основные требования к разъемам следующие:

внесение минимального затухания и обратного отражения сигнала;

минимальные габариты и масса при высокой прочности;

долговременная работа без ухудшения параметров;

простота установки на кабель (волокно);

простота подключения и отключения.

На сегодня известно несколько десятков типов разъемов, и нет того единого, на который было бы стратегически сориентировано развитие отрасли в целом. Но основная идея все вариантов конструкций проста и достаточно очевидна. Необходимо точно совместить оси волокон, и плотно прижать их торцы друг к другу (создать контакт).

Принцип действия оптоволоконного разъема контактного типа.

Основная масса разъемов выпускается по симметричной схеме, когда для соединения разъемов используется специальный элемент - coupler (соединитель). Получается, что сначала волокно закрепляется и центрируется в наконечнике разъема, а затем уже сами наконечники центрируются в соединителе.

Таким образом, можно видеть, что на сигнал влияют следующие факторы:

Внутренние потери - вызванные допусками на геометрические размеры световодов. Это эксцентриситет и эллиптичность сердцевины, разность диаметров (особенно при соединении волокон разного типа);

Внешние потери, которые зависят от качества изготовления разъемов. Возникают из-за радиального, углового смещения наконечников, непараллельности торцевых поверхностей волокон, воздушного промежутка между ними (френелевские потери);

Обратное отражение. Возникает из-за наличия воздушного промежутка (френелевское отражение светового потока в обратном направлении на границе стекло-воздух-стекло). Согласно стандарта TIA/EIA-568А, нормируется коэффициент обратного отражения (отношение мощности отраженного светового потока к мощности падающего). Он должен быть не хуже -26 дБ для одномодовых разъемов, и не хуже -20 дБ для многомодовых;

Загрязнение, которое, в свою очередь, может вызвать как внешние потери, так и обратное отражение.

Несмотря на отсутствие официально признанного всеми производителями типа разъема, фактически распространены ST и SC, весьма похожие по своим параметрам (затухание 0, 2-0, 3 дБ).

Разъемы оптических волокон.

ST. От английского straight tip connector (прямой разъем) или, неофициально Stick-and-Twist (вставь и поверни). Был разработан в 1985 году AT&T, ныне Lucent Technologies. Конструкция основана на керамическом наконечнике (феруле) диаметром 2, 5 мм с выпуклой торцевой поверхностью. Фиксация вилки на гнезде выполняется подпружиненным байонетным элементом (подобно разъемам BNC, использующимся для коаксиального кабеля).

Разъемы ST - самый дешевый и распространенный в России тип. Он немного лучше, чем SC, приспособлен к тяжелым условиям эксплуатации благодаря простой и прочной металлической конструкции (допускает больше возможностей для применения грубой физической силы).

Как основные недостатки, можно назвать сложность маркировки, трудоемкость подключения, и невозможность создания дуплексной вилки.

SC. От английского subscriber connector (абонентский разъем), а иногда используется неофициальная расшифровка Stick-and-Click (вставь и защелкни). Был разработан японской компанией NTT, с использованием такого же, как в ST, керамического наконечника диаметром 2, 5 мм. Но основная идея заключается в легком пластмассовом корпусе, хорошо защищающим наконечник, и обеспечивающим плавное подключение и отключение одним линейным движением.

Такая конструкция позволяет достичь большой плотности монтажа, и легко адаптируется к удобным сдвоенным разъемам. Поэтому разъемы SC рекомендованы для создания новых систем, и постепенно вытесняют ST.

Дополнительно нужно отметить еще два типа, один из которых используется в смежной отрасли, а другой постепенно набирает популярность.

FC. Очень похож на ST, но с резьбовой фиксацией. Активно используется телефонистами всех стран, но в локальных сетях практически не встречается.

LC. Новый "миниатюрный" разъем, конструктивно идентичный SC. Пока достаточно дорог, и для "дешевых" сетей его применение бессмысленно. Как главный аргумент "за" создатели приводят большую плотность монтажа. Это достаточно серьезный довод, и в отдаленном (по телекоммуникационным меркам) будущем вполне возможно, что он станет основным типом.

Волокна заряжены в сварочный аппарат

Здравствуйте, читатели Хабра! Все слышали про оптические волокна и кабели. Нет нужды рассказывать, где и для чего используется оптика. Многие из вас сталкиваются с ней по работе, кто-то разрабатывает магистральные сети , кто-то работает с оптическими мультиплексорами . Однако я не встретил рассказа про оптические кабели, муфты, кроссы, про саму технологию сращивания оптических волокон и кабелей. Я - спайщик оптических волокон, и в этом (первом своём) посте хотел бы рассказать и показать вам, как всё это происходит, а также часто буду в своём рассказе отвлекаться на прочие смежные с этим вещи. Опираться буду в основном на свой опыт, так что я вполне допускаю, что кто-то скажет «это не совсем правильно», «вот тут неканонично».
Материала получилось много, поэтому возникла необходимость разбить топик на части.
В этой первой части вы прочтёте про устройство и разделку кабеля, про оптический инструмент, про подготовку волокон к сварке. В других частях, если тема окажется вам интересной, я расскажу про методы и покажу на видео сам процесс сращивания самих оптических волокон, про основы и некоторые нюансы измерений на оптике, коснусь темы сварочных аппаратов и рефлектометров и других измерительных приборов, покажу рабочие места спайщика (крыши, подвалы, чердаки, люки и прочие поля с офисами), расскажу немного про крепёж кабелей, про схемы распайки, про размещение оборудования в телекоммуникационных стойках и ящиках. Это наверняка пригодится тем, кто собирается стать спайщиком. Всё это я сдобрил большим количеством картинок (заранее извиняюсь за paint-качество) и фотографий.
Осторожно, много картинок и текста.

Вступление

Для начала пара слов обо мне и моей работе.
Я работаю спайщиком оптики. Начинал с телефониста и монтажника, затем поработал в аварийной бригаде на обслуживании магистральной оптики. Сейчас работаю в организации, которая берёт генподряды на строительство объектов и линий связи у различных компаний. Типичный объект строительства - кабельная линия, связывающая несколько контейнеров базовых станций GSM. Или, к примеру, несколько колец FTTB. Или что помельче - например, прокладка кабеля между двумя серверными на разных этажах здания и разварка на концах кабеля кроссов.
Если тендер выигран, ищутся подходящие субподрядчики, выполняющие работы (проектно-изыскательные и строительно-монтажные). В некоторых регионах это наши дочерние предприятия, в некоторых есть собственная техника и ресурсы, в некоторых нанимаются независимые компании. На наши же плечи главным образом ложится контроль, устранение косяков субподрядчиков и различных форс-мажоров, всевозможные согласования с собственниками земель и администрациями, иногда составление исполнительной документации по построенному объекту (документация - главным образом РД 45.156-2000, вот есть перечень, плюс ещё добавляется раздел с разными лицензиями) и прочее. Зачастую нужна работа с оптикой: сварить или переварить где-то оптическую муфту или кросс, устранить последствия сбитой стритрейсером опоры или упавшего на кабель дерева, провести входной контроль барабана кабеля, снять рефлектограммы участка и прочее. Именно эти задачи я и выполняю. Ну и попутно, когда нет задач по оптике - прочие задачи: от погрузочно-монтажных через курьерско-доставочные до копировально-бумажных работ. :)

Оптический кабель, его виды и внутренности

Итак, что представляет собой оптический кабель? Кабели бывают разные.


По конструкции - от самых простых (оболочка, под ней пластиковые трубочки-модули, в них сами волокна) до супернавороченных (множество слоёв, двухуровневая броня - например, у подводных трансокеанских кабелей).

По месту использования - для наружной и внутренней прокладки (последние встречаются редко и обычно в дата-центрах высокого класса, где всё должно быть идеально правильно и красиво). По условиям прокладки - для подвеса (с кевларом или тросиком), для грунта (с бронёй из железных проволочек), для прокладки в кабельной канализации (с бронёй из гофрированного металла), подводные (сложная, сверхзащищающая многослойная конструкция), для подвеса на опорах ЛЭП (кроме передачи информации, выпоняют роль молниезащитного троса). В моей практике чаще всего встречаются кабели для подвеса на столбы (с кевларом) и для прокладки в грунт (с бронёй). Пореже попадаются с тросиком и с гофробронёй. Ещё часто встречается кабель, который по существу есть тонкий спаренный оптический патч-корд (жёлтая оболочка у одномода и оранжевая - у многомода, чуток кевлара и одно волокно; две оболочки спарены). Прочие оптические кабели (без защиты, подводные, для прокладки в помещениях) - экзотика. Почти все кабели, с которыми я работаю, имеют конструкцию, как на картинке ниже.

1 - центральный силовой элемент (проще говоря - пруток из стеклопластика, хотя может быть и тросик в полиэтиленовой оболочке). Служит для центрирования трубок-модулей, придания жёсткости всему кабелю. За него также часто закрепляют кабель в муфте/кроссе, зажимая под винт. При сильном изгибе кабеля имеет подлое свойство ломаться, ломая попутно и модули с частью волокон. Более продвинутые конструкции кабеля содержат этот пруток, одетый в полиэтиленовую оболочку: тогда его труднее сломать и разрушений в кабеле он при переломе причинит меньше. Пруток бывает и такой, как на рисунке, и совсем тонкий. Кончик такого прутка - отличный абразивный инструмент для тонких работ: например, почистить контакты реле или участок медной детали под пайку. Если его сжечь на пару сантиметров, получится хорошая мягкая кисточка. :)
2 - сами оптические волокна (на рисунке - в лаковой изоляции). Те самые тончайшие нити-световоды, ради которых всё затевается. В статье речь пойдёт только про стеклянные волокна, хотя где-то в природе существуют и пластиковые, но они - большая экзотика, не варятся аппаратами для сварки оптики (только механическое соединение) и пригодны только на очень малых расстояниях и я лично с ними не сталкивался. Оптические волокна бывают одномодовые и многомодовые, я встречался только с одномодом, так как многомод - менее распространённая технология, может использоваться только на короткие расстояния и во многих случаях прекрасно заменяется одномодом. Волокно состоит из стеклянной «оболочки» из стекла с определёнными примесями (на химии и кристаллографии останавливаться не стану, так как не владею темой). Без лака волокно имеет толщину 125 мкм (чуть толще волоса), а в центре его идёт сердечник диаметром 9 мкм из сверхчистого стекла с другим составом и с немного отличным от оболочки показателем преломления. Именно в сердечнике распространяется излучение (за счёт эффекта полного отражения на границе «сердечник - оболочка»). Наконец, сверху 125-микрометровый цилиндр «оболочки» покрыт другой оболочкой - из особого лака (прозрачного или цветного - для цветовой маркировки волокон), который ЕМНИП тоже двухслойный. Он предохраняет волокно от умеренных повреждений (без лака волокно хоть и гнётся, но плохо и легко сломать, волокно элементарно раскрошится от случайно положенного на него мобильника; а в лаке его можно смело обмотать вокруг карандаша и довольно сильно дёрнуть - оно выдержит). Случается, что пролёт кабеля провисает на одних волокнах: порвало (пережгло, порезало) все оболочки, кевлар, лопнул центральный пруток, а какие-то 16 или 32 125-микрометровых стеклянных волокна могут неделями держать вес пролёта кабеля и ветровые нагрузки! Тем не менее, даже в лаке волокна можно легко повредить, поэтому в работе спайщика самое главное - дотошность и аккуратность. Одним неловким движением можно испортить результаты целого дня работы или, если особо не повезёт и нет резервирования, надолго уронить магистральную связь (если, копаясь в «боевой» магистральной муфте, сломать волокно с DWDM-ом под корешок на выходе из кабеля).
Волокон бывает много сортов: обычное (SMF или просто SM), со смещённой дисперсией (DSF или просто DS), с ненулевой смещённой дисперсией (NZDSF, NZDS или NZ). Внешне различить их нельзя, разница - в химическом/кристаллическом составе и, возможно, в геометрии центрального сердечника и в плавности границы между ним и оболочкой (к сожалению, так для себя и не прояснил этот вопрос до конца). Дисперсия в оптических волокнах - суровая и сложная для понимания штука, достойная отдельной статьи, поэтому объясню проще - по волокнам со смещённой дисперсией можно передавать сигнал без искажений дальше, чем по простым. На практике спайщики знают два типа: простое и «со смещёнкой». В кабеле часто выделяют первый модуль под «смещёнку», а остальные - под простые волокна. Стыковать «смещёнку» и простое волокно можно, но нежелательно, это вызывает один интересный эффект, о котором я расскажу в другой части, про измерения.
3 - пластиковые трубочки-модули , в которых плавают в гидрофобе волокна.

Кабель, разделанный до модулей


Легко ломаются (точнее, внезапно перегибаются) при изгибе наподобие телескопических антенн у бытовых приёмников, ломая внутри себя волокна. Иногда модуль бывает всего один (в виде толстой трубки), а в нём пучок волокон, но в этом случае нужно слишком много разных цветов для маркировки волокон, поэтому обычно делают несколько модулей, в каждом из которых от 4 до 12 волокон. Единого стандарта на расцветку и количество модулей/волокон нет, каждый производитель делает по-своему, отображая всё в паспорте на кабель. Паспорт прилагается к барабану кабеля и обычно пришпиливается степлером к дереву прямо внутри барабана.

Паспорт кабеля


Типичный паспорт на кабель. Извиняюсь за качество.

Однако есть надежда, что, скажем, кабель «ДПС» у производителей «Трансвок» и «Белтелекабель» окажется всё-таки одинаковым по конфигурации. Но всё равно нужно смотреть паспорт на кабель, где всегда указана подробная расцветка и то, какого типа волокна в каких модулях лежат. Минимальная ёмкость «взрослого» кабеля, что я встречал - 8 волокон, максимальная - 96. Обычно 32, 48, 64. Бывает, что из всего кабеля занято 1 или 2 модуля, тогда вместо остальных модулей вкладывают чёрные заглушки-пустышки (чтобы габаритные параметры кабеля не изменились).
4 - плёнка , оплетающая модули. Играет второстепенные роли - демпфирующую, снижающую трение внутри кабеля, доп.защита от влаги, удерживающую гидрофоб в пространстве между модулей и, возможно, что-то ещё. Часто бывает дополнительно стянута нитками крест-накрест и с обеих сторон смочена гидрофобным гелем.
5 - тонкая внутренняя оболочка из полиэтилена. Доп.защита от влаги, защитная прослойка между кевларом/бронёй и модулями. Может отсутствовать.
6 - кевларовые нити или броня . На рисунке броня из прямоугольных прутков, но куда чаще встречается из круглых проволочек (в импортных кабелях - проволочки сталистые и трудноперекусываемые даже тросокусами, в отечественных - обычно из гвоздевого железа). Броня может быть и в виде стеклопластиковых прутков, таких же, как центральный элемент, но на практике не встречался с таким. Кевлар нужен, чтобы кабель выдерживал большое усилие на разрыв и при этом не был тяжёлым. Также часто используется вместо тросика там, где в кабеле не должно быть металла во избежание наводок (например, если кабель висит вдоль железной дороги, где рядом контактный провод с 27,5 кВ). Типичные значения допустимого растягивающего усилия для кабеля с кевларом - 6...9 килоньютонов, это позволяет выдержать большой пролёт при ветровой нагрузке. При разделке кевлар страшно тупит режущий инструмент. :) Поэтому его лучше резать или специальными ножницами с керамическими лезвиями, или откусывать тросокусами, что я и делаю.
Что касается брони - она призвана защитить подземный кабель, лежащий прямо в грунте, без защиты в виде пластиковой трубы, кабельной канализации и пр. Впрочем, защитить броня может только от лопаты, экскаватор всё равно рвёт любые кабели влёт. Поэтому подземный кабель закладывается в грунт на 1м 20 см, а над ним на глубине 60 см кладётся жёлтая или оранжевая сигнальная лента с принтом «Осторожно! Не копать! Ниже кабель», а также вдоль трассы ставятся столбики, предупреждающие таблички и аншлаги. Но всё равно копают и рвут.
7 - внешняя толстая оболочка из полиэтилена . Принимает на себя первой все тяготы при прокладке и эксплуатации кабеля. Полиэтилен мягкий, так что её несложно порезать при неаккуратной затяжке кабеля. Случается, что при прокладке подземного кабеля подрядчик порвёт до брони эту оболочку на несколько метров и не заметит, в грунте в кабель попадает влага несмотря на гидрофоб, а потом на сдаче, при испытаниях внешней оболочки мегаомметром, мегаомметр показывает низкое сопротивление (большой ток утечки).

Если висящий кабель касается бетонного столба или древа, полиэтилен также может быстро протереться до волокон.
Между внешней оболочкой и бронёй может присутствовать полиэтиленовая плёнка и некоторое количество гидрофобного геля.

В России, к сожалению, оптические волокна уже не производят (тут, увы, была бы уместна шутка про полимеры). Существует российская лаборатиря, изготавливающая опытные волокна для специальных целей, как подсказал esvaf .
Их покупают у таких фирм, как Corning, OFS, Sumitomo, Fujikura и др. Но вот кабели в России и Белоруссии делают! Более того, в моей практике 95% кабелей, с которыми я работал - это кабели из России или Белоруссии. При этом в кабель закладывается импортное волокно. Навскидку из своего опыта припоминаю такие фирмы-производители кабелей, как Белтелекабель, МосКабель Фуджикура (МКФ), Еврокабель, Трансвок, Интегра-кабель, ОФС Связьстрой-1, Саранск-кабель, Инкаб. Есть и другие. Из импортных кабелей в памяти остался только Siemens. Субъективно все кабели похожи по конструкции и материалам и качеством особо не различаются.
Вот, собственно, я рассказал про устройство оптических кабелей. Идём дальше.

Разделка кабеля: необходимый инструмент и методика

Для разделки кабеля, как и для сварки, требуется ряд специфических инструментов. Типичный набор монтажника-спайщика – чемодан с инструментами «НИМ-25», в нём содержатся все нужные стрипперы, тросокусы, отвёртки, бокорезы, плоскогубцы, макетный нож и прочий инструмент, а также помпа или пузырёк для спирта, запас растворителя гидрофоба «D-Gel», нетканные безворсовые салфетки, изолента, самоклеящиеся цифры-маркеры для кабелей и модулей и прочие расходные материалы.


После доукомплектования расходными материалами (стяжки, червячные хомуты и пр) и некоторыми вспомогательными инструментами его вполне достаточно для работы с оптикой. Также существуют и другие наборы, богаче и беднее по комплектации («НИМ-Э» и «НИМ-К»). Слабое место большинства наборов – низкое качество «типа алюминиевого» кейса, который лишь выглядит красиво, но на самом деле состоит из тонкой ДВП, обклееной текстурированной/гофрированной фольгой, и алюминиевых тонких уголков на заклёпках. Он не выдерживает долго в полевых и городских условиях, и его приходится ремонтировать и усиливать. В моём случае кейс выдержал 3 года и, будучи весь подран, стянут уголками и болтами, с «колхозным» органайзером вместо родного, был сменён на обычный пластиковый ящик для инструментов. Некоторые инструменты и материалы из стандартного набора могут оказаться низкого качества. Некоторые инструменты лично мне оказались не нужны. Некоторые за 3 года работы уже были заменены. По мере расходования «фирменных» расходников некоторые заменяются «подручными» без ущерба для качества работы. Так, заводские нетканные безворсовые салфетки для протирки волокон легко заменяются туалетной бумагой типа «зевы плюс». :) Главное, чтоб была неароматизированная. Вместо дорогого (около 800 р/литр) D-Gel, если работа идёт на открытом воздухе, можно использовать бензин АИ-92.

При разделке кабелей важно выдержать длины элементов кабеля в соответствии с требованием инструкции к муфте: так, в одном случае может понадобиться оставить длинный силовой элемент, чтобы закрепить его в муфте/кроссе, в другом случае он не требуется; в одном случае из кевлара кабеля плетётся косичка и зажимается под винт, в другом случае кевлар отрезается. Всё зависит от конкретной муфты и конкретного кабеля.

Рассмотрим разделку наиболее типичного кабеля:

А) Перед разделкой кабеля, долго находившегося в сырости или без гидроизолированного торца, следует отрезать ножовкой примерно метр кабеля (если позволяет запас), так как длительное воздействие влаги негативно влияет на оптическое волокно (может помутнеть) и на прочие элементы кабеля. Кевларовые нити в кабеле - это отличный капилляр, который может «насосать» в себя воду на десятки метров, что чревато последствиями, если, например, параллельно с кабелем идут провода высокого напряжения: по мокрому кевлару могут начать гулять токи, вода испаряется, раздавливает изнутри внешнюю оболочку, кабель идёт пузырями и через пузыри от дождей попадает новая влага.

Б) При наличии в конструкции кабеля отдельного троса для подвески (когда кабель в поперечном сечении имеет форму цифры «8», где в нижней части кабель, в верхней тросик) он выкусывается тросокусами и срезается ножом. При срезании троса важно не повредить кабель.

В) Для снятия внешней оболочки кабеля используется соответствующий нож-стриппер. НИМ-25 обычно комплектуется ножом «Kabifix» как на фото ниже, однако можно использовать и нож-стриппер для электрических кабелей, который с длинной ручкой.

Такой нож-стриппер имеет вращающееся во все стороны лезвие, которое можно отрегулировать по длине в соответствии с толщиной внешней оболочки кабеля, и прижимной элемент для удержания на кабеле. Важно: если приходится разделывать кабели разных марок, то перед разделкой нового кабеля нужно попробовать нож на кончике и, если прорезало слишком глубоко и повредило модули, лезвие надо подкрутить покороче. Хуже некуда, когда муфта уже сварена, и вдруг при укладке волокон одно волокно вдруг «выскакивает» из кабеля, потому что при разделке нож зацепил модуль и сломал это волокно: вся работа насмарку.
Ножом-стриппером для снятия внешней оболочки кабеля делается круговой разрез на кабеле, а затем от него – два параллельных разреза с противоположных сторон кабеля в сторону конца кабеля, чтобы внешняя оболочка распалась на две половинки.

Важно правильно выставить длину лезвия ножа-стриппера, так как при слишком коротком лезвии внешняя оболочка не разделится легко на две половинки и её придётся долго сдирать плоскогубцами, а в случае длинного лезвия можно повредить модули в глубине кабеля или затупить вращающееся лезвие о броню.

Г) Если кабель самонесущий с кевларом, то кевлар срезается тросокусами либо ножницами со специальными керамическими лезвиями.


Тросокусы

Кевлар не следует срезать ножом или простыми ножницами без керамических накладок на лезвиях, так как кевлар быстро тупит металлический режущий инструмент. В зависимости от конструкции муфты может потребоваться оставить часть кевлара определённой длины для фиксации, про это будет сказано в инструкции по монтажу муфты.
Если кабель предназначен для прокладки в телефонной канализации и из брони содержит лишь металлическую гофру (чтоб крысы не прогрызли), её можно разрезать продольно специальным инструментом (усиленным плужковым ножом).Либо осторожно сделать маленьким труборезом или даже обычным ножом на гофре круговую риску и, пошатывая, добиться роста усталости металла в месте риски и появления трещины, после чего можно снять часть гофры, надкусить модули и стянуть гофру. Такую разделку нужно осуществлять особенно осторожно, так как легко повредить модули и волокна: гофра не слишком прочная, может промяться в том месте, где её ковыряют инструментами, и при стягивании с волокон острые края в месте надлома могут пропороть модули и повредить волокна. Кабель с гофрой не самый удобный для разделки.
Если кабель бронирован круглыми проволоками, их следует откусить тросокусами небольшими партиями, по 2-4 проволоки. Бокорезами получается дольше и тяжелее, особенно если проволока сталистая. Для некоторых муфт требуется определённая длина брони для фиксации, также броню (в том числе гофрированную) часто требуется заземлять.

Д) Для внутренней, более тонкой оболочки, присутствующей в некоторых кабелях (например, в самонесущих с кевларом), следует использовать отдельный, заранее настроенный нож-стриппер (можно такой же, как для снятия внешней оболочки кабеля), чтобы не сбивать настройки длины ножа каждый раз при разделке кабеля. В данном случае особенно важно правильно выставить длину лезвия в ноже-стриппере, она будет меньше, чем в стриппере для снятия внешней оболочки кабеля, так как внутренняя оболочка существенно тоньше, а сразу под ней - модули с волокнами. При определённом навыке для удаления внутренней оболочки можно использовать обычный макетный нож, производя им продольный разрез, но есть существенный риск повредить модули. Можно также использовать стриппер-прищепку для разделки коаксиала.

Е) С модулей при помощи салфеток и D-Gel/бензина удаляются нитки, пластиковая плёнка и прочие вспомогательные элементы. Нитки можно скручивать по одной, можно сдирать специальным острым «плужковым» крючком (может входить в конструкцию некоторых ножей-стрипперов для удаления оболочки). Для удаления гидрофоба используется растворитель D-Gel (бесцветная маслянистая жидкость, имеет запах апельсина, токсичен) или бензин. Однако с бензином аккуратно: сотрудники офиса, у которых под боком льётся бензин, не будут рады аромату. Да и пожароопасно.
Работать следует в одноразовых перчатках (хирургических, полиэтиленовых или строительных), так как гидрофоб - очень неприятная гадость (самое неприятное в работе спайщика!), тяжело отмывается, после бензина или гидрофоба руки остаются некоторое время жирными, а после разделки кабеля предстоит сварка волокон, требующая чистоты рук и рабочего места. Зимой руки, выпачканные в гидрофоб, сильно мёрзнут. Впрочем, наловчившись, можно разделывать кабели почти не пачкая руки.
После удаления ниток и разделения жгута модулей на отдельные модули каждый модуль протирается салфетками или ветошью с растворителем D-Gel/бензином, а затем спиртом до чистого состояния. Хотя, в целях экономии времени и чтоб меньше пачкаться, можно поступить следующим способом – изначально разделать кабель до модулей не до конца, а в месте откуда начинается разделка, сантиметров на 30, ничего не протирая надкусить модули (см. пункт «ё») и стянуть с волокон весь жгут модулей с намоткой и нитками, держась рукой за чистый конец кабеля как за ручку. Руки остаются почти чистыми, время экономится. Однако при таком способе разделки есть риск порвать часть волокон или приложить к волокнам чрезмерное растягивающее усилие, что отрицательно скажется на затухании волокон в будущем, а также больше вероятность повредить модули, поэтому такой способ не рекомендуется, особенно в зимнее время, когда гидрофобный заполнитель густеет. Сначала надо научиться делать правильно, а потом уже пробовать разные оптимизации.

ё) На необходимой длине каждый модуль (кроме модулей-пустышек, они выкусываются под корень, но сначала следует убедиться, что в них действительно нет волокон) надкусывается стриппером для модулей (подойдёт и для медного коаксиала), после чего модуль можно без особых усилий стянуть с волокон.


Надкусывание стриппером модулей - это очень ответственный момент. Нужно выбрать выемку точного диаметра, так как если выемка будет больше, чем нужно – модуль не надкусится достаточно, чтоб легко сняться, если меньше – есть риск перекусить волокна в модуле. Кроме того, следует внимательно следить за собачкой-фиксатором стриппера: если в момент надкусывания модуля она заблокирует обратный ход стриппера, зафиксировав его в «сомкнутом» состоянии, то чтоб разнять стриппер и откинуть фиксатор, придётся снова сомкнуть инструмент на уже надкусанном модуле, при этом есть большая вероятность перекусить модуль, что приведёт к необходимости заново разделывать кабель. Помним, что при надкусывании одного из модулей нам активно мешают прочие модули, которые надо придерживать другой рукой, и сам кабель на весу тоже как-то нужно держать. Поэтому поначалу будет очень неудобно и разделывать кабель следует вдвоём.
Существуют конструкции кабеля, где модуль единственный и имеет вид жёсткой пластиковой трубки в центре кабеля. Для качественного снятия такого модуля его следует надрезать по кругу маленьким труборезом (в НИМ-25 не входит), а затем осторожно надломить в месте круговой риски.
При стягивании модулей следует убедиться, что все волокна целы и ни одно волокно не осталось торчать из стянутого модуля.
Если температура низкая, модули тонкие, по конструкции кабеля в модулях мало гидрофоба (=смазки) или длина снимаемых модулей значительна – модуль может не стянуться с волокон без усилий. В этом случае нельзя сильно тянуть, так как растяжение может сказаться на затухании волокон в этом месте, даже если волокна не порвутся. Следует надкусывать и снимать модуль в 2-3 приёма, по частям и медленно.
При разделке кабеля следует обратить внимание на длину волокон. Она должна быть не менее указанной в инструкции, обычно это 1,5-2 метра. В принципе можно разделать и на 15 см и потом даже как-то сварить, но потом при укладке волокон в кассету возникнут большие проблемы: большой запас волокон нужен как раз для того, чтобы был простор для «манёвров» при укладке, чтобы можно было «сыграть» по длине и красиво уложить все волокна в кассету.

Иногда возникает необходимость ввариться в транзитный кабель, не разрезая его. В этом случае он так же, как обычный, разделывается до модулей, но требования к осторожности разделки жёстче: ведь по кабелю уже может идти связь. Он разделывается до модулей и модули аккуратно вводятся в «овальный» ввод муфты (в обычный круглый не войдут - сломаются), для этого ввода используется специальный комплект из термоусадки и металлический клипсы с блоком термоклея. Этот клей при усадке от высокой температуры расплавляется и заливает пространство между двух кабелей, обеспечивая герметичность. Далее тот модуль, в который надо ввариться, разрезается, те волокна из него, которые отпаивать не надо, свариваются обратно транзитом, а те, что нам нужны - привариваются к «отпайному» (ответвляющемуся) кабелю. Очень редко может возникнуть ситуация, когда нам нужно взять из модуля волокно, но резать модуль нельзя (по нему идёт важная связь). Тогда применяется комплект для продольной разделки модулей : с модуля продольно снимается «фаска», волокна из него извлекаются, протираются от гидрофоба и сортируются. Те, что нам нужны, режутся и варятся на другой кабель согласно схеме, а остальные просто укладываются в кассету. В этом случае, если заводится неразрезной кабель, длина волокон должна быть вдвое больше (2-3 м), это и понятно.

Волокна должны быть чистыми (тщательно протёртыми от гидрофоба), следует особо следить, чтобы все волокна были целыми. Волокна требуют бережного обращения, ведь в случае, когда кабели разделаны и заведены, сварка почти окончена и ломается какое-то волокно у выхода из кабеля, придётся заново провести разделку кабеля и сварку, что отнимет много времени и крайне нежелательно и убыточно при оперативном восстановлении связи на действующей магистрали.


Оптические волокна, повреждённые в результате небрежной разделки кабеля (была неверно выставлена длина лезвия стриппера для снятия внутренней оболочки кабеля, в результате чего прорезались модули и повредилась часть волокон)

Ж) Волокна следует хорошо протереть безворсовыми салфетками со спиртом, чтобы полностью удалить гидрофобный заполнитель. Сначала волокна протираются сухой салфеткой, затем – салфетками, смоченными в изопропиловом либо этиловом спирте. Именной такой порядок потому, что на первой салфетке остаётся огромная капля гидрофоба (спирт тут не нужен), а вот на 4-5й салфетке уже можно призвать на помощь спирт, чтобы он растворил остатки гидрофоба. Спирт с волокон быстро испаряется.

Использованные салфетки (а также ошмётки оболочки кабеля, сколотые волокна и прочий мусор) надо обязательно за собой убирать - пожалейте природу!
Чистота волокон, особенно ближе к концам, имеет большое значение для качественной сварки. Там, где идёт работа с микронами, грязь и пыль недопустима. Волокна следует осмотреть на предмет целостности лакового покрытия, отсутствия грязи, сломанных частей волокон. Если лак на каком-то волокне повредился, но ещё не сломался - лучше не рисковать и переразделать кабель. Потратите 10-15 минут, а иначе рискуете потратить целый день.

З) На разделанные кабели одеваются специальные клеевые термоусадки, которые часто входят в комплект муфты (если муфта с патрубком для ввода кабеля). Если муфта предусматривает зажимание кабеля в сырой резине с герметиком, то термоусадка не нужна. Весьма распространённая и весьма неприятная ошибка новичка - забыть одеть термоусадку! Когда муфта сварена, термоусадка надвигается на патрубок муфты и усаживается газовой горелкой, паяльной лампой или промышленным феном, обеспечивая герметичный ввод кабеля в муфту и дополнительную фиксацию кабеля. Усаживать практичнее всего маленькой горелкой, надетой на баллончик туристического газа с ценговым зажимом: одного баллончика хватает на десятки сваренных муфт, просто зажигается в отличие от паяльной лампы, мало весит, нет зависимости от электричества в отличие от промышленного фена.
Перед усадкой патрубок муфты и сам кабель нужно зашкурить грубой наждачкой для лучшей адгезии клея. Если этим пренебречь - может получиться вот такое недоразумение:

Если термоусадку одеть всё же забыли - поможет термоусаживаемая манжета с замком (известная как XAGA). Колхозить герметизацию изолентой нельзя!
Некоторые термоусадки (например, фирмы Raychem) покрыты точками зелёной краски, которая при нагреве чернеет, указывая, что вот это место греть больше не нужно, а вот тут следует прогреть ещё. Сделано это потому, что термоусадка может лопнуть, если её перегреть в каком-то месте.
Усаживать лучше после того, как муфта сварена. Если при сварке случится неприятность (например, сломалось волокно и придётся переразделывать кабель), то не придётся ковырять ножом застывшую толстую клеевую термоусадку, и сама термоусадка не потратится зря.

И) Разделанные кабели вводятся в муфту или кросс, фиксируются, а сама муфта или кросс фиксируется на рабочем столе. При фиксации кабеля в муфте или в кроссе следует руководствоваться инструкцией по монтажу - для разных муфт там всё по-разному.В некоторых случаях (бронированный кабель и, например, муфта МТОК А1 с соответствующим комплектом для ввода) фиксация кабеля в муфте - отдельная непростая операция с подрезанием брони, намоткой герметика и пр.

Вот мы и завели разделанный кабель в муфту/кросс, теперь нужно отмерять и зачищать волокна, одевать КДЗС и варить по схеме. Об этом расскажу в следующей части, так как получается многовато для одной статьи.

Оптические муфты

Расскажу немного про оптические муфты и кроссы. Начну с муфт.

Оптическая муфта - это пластиковый контейнер, в который заводятся кабели и там соединяются. Раньше, в конце 90-х - начале 2000х, когда все специализированные материалы для оптики были дефицитом с заоблачными ценами, в качестве муфт некоторые шустрые ребята лепили канализационные фитинги или пластиковые бутылки. Иногда даже работало несколько лет. :) Сегодня это, безусловно, дикость, нормальные муфты можно купить в любом среднем и крупном городе и цены начинаются от 1500-2000 рублей. Конструкций муфт много. Наиболее массовая и привычная конструкция для меня лично - это как у серии связьстройдеталевских муфт «МТОК». Имеется оголовье, из которого снаружи торчат патрубки для ввода кабеля. Изнутри оголовья прикреплена металлическая рамка, к которой крепятся оптические кассеты. Сверху одевается колпак (который для прочности может делаться с рёбрами жёсткости), герметизируемый резинкой. Колпак фиксируется разъёмным пластиковым хомутом: муфту всегда можно открыть и закрыть, не тратя ремкомплект из термоусадок.

Вообще «Связьстройдеталь» делает в целом неплохие муфты для разных применений. Из серии МТОК мне лично больше всего нравится муфта Л6: универсальная, стоит недорого, монтируется просто.

Есть и другие муфты в серии МТОК - малогабаритные, для канализации, для ввода бронированных кабелей, для закапывания под землёй. К каждой муфте есть возможность докупить доп.комплектующие и комплекты для ввода кабеля: например, чугунная бронезащита подземной муфты «МЧЗ», лишний комплект оптической кассеты с расходниками или дополнительный комплект для ввода ещё одного кабеля.
Если надо подешевле - у них есть серия муфт «МОГ», из которой самая массовая - муфта «МОГ-У» (Муфта Оптическая Городская, Укороченная): при цене менее 2000 рублей мы получаем простую и качественную муфту, которую, врочем, некоторые считают неудобной для монтажа.

На столбе такая муфта будет смотреться не очень, да и сматывать запас кабеля с такой муфтой, стоя на лестнице, неудобно, поэтому их обычно ставят в люках. Эта муфта и создана, чтобы её клали в телефонном люке на специальные стандартные консоли. Минус «могушки» - в том, что у неё нет запорного разъёмного хомута и для её открытия придётся срезать термоусадку, а при закрытии тратить ремкомплект из широких термоусадок (если кабели заведены с одного конца) или термоусаживаемую манжету (если кабели с обеих сторон). Этим же страдают МТОКи серии А. Кроме того, если вводить кабели с двух сторон, важно не забыть заранее одеть пластиковую трубу на одну из «сторон» кабелей, иначе её потом не одеть не разрезая: этим тоже страдают новички.

Также порой встречаются муфты без патрубков, в которых кабели герметизируются путём зажатия в сырой резине или в герметике. Вот, например, муфта «SNR-A», которую мы с напарником разваривали в рамках строительства FTTB-кольца.

Такой способ герметизации кабелей требует большой аккуратности, так как иначе вода может попасть в муфту, что нежелательно. Во-первых, вода в муфте со временем может вызвать помутнение стекла волокон и порчу лака. Во-вторых, поржавеют всякие металлические конструктивные элементы, сгниёт заземляющий броню провод, если он есть. В-третьих, кевлар натянет в себя воды. И самое главное - муфту, полную воды, в мороз просто раздавит вместе с волокнами.
В оптическую муфту обычно заводится не менее двух кабелей. Конечно, можно придумать дикую схему разварки, когда будет вводиться один кабель и развариваться сам на себя, но обычно вводится 2-3 кабеля. Если вводится 4-5 кабелей, да ещё все кабели разные с разной расцветкой и разным количеством волокон в модулях, то муфта получается сложная для монтажа и последующего разбора что куда припаяно. Первую такую свою муфту я с напарником варил 3 дня! :) Так что лучше проектировать сеть так, чтобы в муфту не входило более 3 кабелей.

Оптические кроссы

Оптический кросс предназначен для оконечивания кабеля в месте, куда его подвели: на базовой станции, в ИВЦ, в дата-центре, в серверной. Типичный кросс представляет собой металлический ящик типоразмера 19" для крепления в стандартной стойке, сзади в него вводится оконечиваемый кабель, спереди расположены планки с портами.


Сваренный кросс на 24 порта типа FC/APC, одноюнитовый


Сваренный кросс на 64 порта типа LC, 2-хюнитовый


Рабочий кросс на 96 портов типа FC

Бывает и вариант подешевле - когда из кросса выкидывают всё, что можно, тогда получается как-то так:


Открытый кросс на 8 портов типа SC/APC, 1 юнит. Плох тем, что оптические пиг-тейлы ничем не защищены и их могут поломать те, кто будут копаться в ящике/стойке, протаскивая, скажем, новый кабель.

Все эти кроссы монтируются в стойку, однако существуют и настенные варианты, и прочие редко встречающиеся.


Настенный кросс на 16 портов типа FC. Кстати, сварен плохо: жёлтые оболочки пиг-тейлов не заходят в КДЗС и волокна могут сломаться, а волокна в кассете уложены с маленькими радиусами изгиба

Вводящийся в кросс кабель сваривается с так называемыми пиг-тейлами: на фотографиях это тонкие жёлтые шнурки внутри кроссов. Каждое волокно - к своему пиг-тейлу. Другая сторона пиг-тейла содержит оптический коннектор-«вилку», которая вставляется в оптический адаптер-«розетку» изнутри кросса.Снаружи кросса коммутация выполняется оптическими патч-кордами (толстые жёлтые шнуры). От пиг-тейла патч-корд отличается более прочным коннектором и наличием кевлара внутри, чтобы в случае, если кто-то зацепится за патч-корд и дёрнет, трудно было вырвать. Ну и коннекторы у патч-кордов с обеих сторон, а у пиг-тейлов только с одной. При необходимости из двух пиг-тейлов можно сварить временный патч-корд.

В принципе в кросс можно завести несколько кабелей, часть волокон из них сварить между собой, а часть вывести на порты. Тогда получится нечто, что можно назвать «кроссомуфта», при этом мы экономим на материалах и сварках. Так иногда делают при монтаже FTTB, однако делать так нежелательно, так как повышается сложность схемы.

Адаптеры и коннекторы

Оптические кроссы характеризуются используемыми в них адаптерами (проще - оптическими розетками). Их существует также большое количество стандартов и подстандартов.


На этой картинке - лишь часть «родов» и «видов» оптических розеток

Стандартом является комплекс из адаптера (розетки) и коннектора (вилки). Конечно, есть переходники между разными стандартами, однако это костыли, которые сгодятся только для измерений и которых следует избегать в постоянно работающей линии связи. Чем меньше в линии всяческих сварных и особенно механических соединений, тем лучше. Конечно, если расстояние маленькое, линия будет работать, даже если на каком-то из кроссов будет теряться пара децибелл. В случае коротких линий иногда специально ставят оптические аттенюаторы. Но вот для очень длинных линий, где оборудование работает на пределе, добавление ещё одного кросса или муфты (то есть каких-то 0,05-0,1 дБ потерь) может оказаться фатальным: линия не поднимется.

Наконечник «вилки» - это, грубо говоря, цилиндр с тоненьким сквозным отверстием под волокно по центру. Торец этого цилиндра не плоский, а чуть-чуть выпуклый. Состоит наконечник из обалденно твёрдой и стойкой к губительным царапинам металлокерамики, хотя очень редко встречаются и металлические. Ходят слухи, как люди ломали бокорезы, пытаясь раскусить этот наконечник. :) Я сам легко царапал этими наконечниками сталь и стекло. Тем не менее обращаться с ними надо осторожно, не допускать попадания пыли, не касаться торца коннекторов пальцем, а если коснулись - протереть смоченной в спирте салфеткой. В идеале используется специальный микроскоп (оптический или с камерой) для контроля состояния патч-кордов. Грязные - чистить, исцарапанные, если царапина пересекает центр со вклеенным волокном - под списание или полировку. Грязные и исцарапанные розетки и патч-корды - частая причина затуханий в линии.
Оптическое волокно фиксируется в наконечнике путём вклейки эпоксидным (или каким-то другим) клеем и последующей шлифовки на специальной машинке, хотя этим занимаются лишь если надо сделать длинные нестандартные патч-корды: проще и дешевле купить готовые. Цена обычного оптического патч-корда длиной 2 метра - около 200-400 рублей.


Изготовление патч-кордов. Эмилинк

На практике чаще всего используются такие стандарты, как FC, SC, LC. Пореже встречаются FC/APC, SC/APC, ST. LC бывает как дуплексный, так и одиночный.

FC

Плюсы - отличное качество соединения, поэтому подходит для ответственных магистралей. Старый проверенный стандарт. Металл (трудно сломать). Если пошевелить рукой хорошо прикрученный коннектор - на связи это не скажется.
Минусы - долго откручивать/закручивать при переключениях. Если на кроссе расположены тесно - бывает очень неудобно подлезть, чтобы открутить какой-то из коннекторов в толпе прочих.
Сам коннектор фиксируется неподвижно благодаря пазу на нём и выемке на адаптере, а пальцами крутится только гайка с насечкой.

SC

Всё то же самое, что в FC, только адаптер и коннектор квадратные, пластиковые и коннектор фиксируется вщёлкиванием, а не прикручиванием. Плюсы - дешевле FC, удобнее и быстрее переключать, минусы - пластик легче сломать, меньше ресурс подключений-отключений. Иногда бывает, что величина отражения и затухания на соединении заметно меняется после прикосновения к подключённому коннектору, что нежелательно для ответственных линий. Цвет разъёмов обычно синий.

LC и LC Duplex

Похожи свойствами на SC, но имеют намного меньшие габариты: двухюнитовый кросс на LC вмещает целых 64 порта, а на SC - только 32. За счёт маленьких габаритов часто монтируются прямо на платы оптических мультиплексоров.

FC/APC, SC/APC, LC/APC
То же самое, что FC, SC и LC, но с косой (A - angle, угол) полировкой наконечника.


Разница между керамическими наконечниками с обычной и косой полировками. Изображение немного неточное: на самом деле в случае и той, и другой полировки торцы не плоские, а немного выпуклые, соответственно при соединении соприкасаться будут только центры наконечников, где волокно.

Такие адаптеры и коннекторы делаются зелёного цвета и при сравнении с обычной полировкой UPC (или просто PC) разница глазом видна. Это нужно, чтобы уменьшить обратное отражение на стыке двух коннекторов. Насколько я знаю, этот тип полировки разрабатывался для передачи аналогового телевидения по оптике, чтобы не возникало двоения изображения на экране, но я могу и ошибаться.
Состыковать между собой «обычную» и «косую» полировку можно, но только если необходимо снять рефлектограмму по принципу «лишь бы было видно длину трассы»: большой воздушный промежуток даст сильные потери и сильное обратное отражение.

На сегодня мой рассказ окончен. Задавайте вопросы, постараюсь ответить. Если вам эта тема окажется интересной - я напишу продолжение.

В прошлом году мы проводили ряд семинаров, посвященных системам передачи информации по оптоволоконному кабелю. Общаясь со слушателями, часто сталкивались с ситуацией, когда люди готовы применять данные системы: у них есть проекты, преимущества решения превалируют над стоимостью - ставь и сдавай проект, получай деньги и уверенность в том, что у заказчика не будет претензий к качеству выполненных работ. Но тот факт, что у специалистов нет никакого опыта работы с подобным оборудованием, их останавливал. Все неоднократно слышали о сложностях, о необходимости высокой квалификации специалистов. Многие считают, что сварка оптоволокна и монтаж оборудования с использованием оптоволоконного кабеля - рискованный процесс, требующий дорогих материалов и высокооплачиваемых сотрудников, что это не для них.


С.А. Карачунский
Руководитель отдела маркетинга компании "В1 электроникс"

На самом деле, работа с оптоволокном хоть и требует определенного опыта и навыков, но их наработать - не такая сложная задача. Тем более что сейчас рынок предлагает большое количество инструментов и оборудования для разделки и монтажа кабеля. Этому вопросу и посвящена данная статья.

Вводная информация

Одно из главных требований при работе с оптоволоконными кабелями - внимательное отношение ко всем этапам процесса монтажа кабельной системы: укладке, разделке, соединению и оконцовке. Ошибка дорогого стоит - это затраты на поиск места повреждения и замена участка кабеля. Замена поврежденного участка не только увеличивает трудозатраты, но и снижает качество всей системы: каждый соединительный элемент, каждая спайка вносит свои искажения в передаваемый сигнал, уменьшает расстояние передачи сигнала, требует увеличения оптического бюджета системы. Для специалистов, которые только начинают свою работу по монтажу оптоволокна, рекомендуется приобрести готовый комплект основных инструментов и материалов, необходимых для проведения работ: тара, дозаторы, распределители, расходные материалы и защитные средства. Спустя некоторое время, когда вы получите начальные навыки работы с оптоволоконным кабелем и сформируете предпочтения в разнообразии используемых инструментов и материалов, вы сможете комбинировать набор "под себя".


Разделка волоконно-оптического кабеля

Волоконно-оптический кабель представляет собой несколько оптических волокон, которые вместе с армирующими нитями заключены в защитную полимерную оболочку. Для защиты от агрессивных внешних воздействий кабель помещают в броневую защиту из гофрированной алюминиевой или стальной защитной ленты либо из стальной проволоки. Из-за того, что оптическое волокно в достаточной степени чувствительно к осевым и радиальным деформациям, для его разрезания непригодны недорогие кабелерезы, которые используются для работы с медными кабелями. Рекомендуется использовать инструмент, лезвия которого рассчитаны на резку стали.

Начальный этап разделки волоконно-оптических кабелей - удаление верхнего слоя защитных и броневых покровов, выполняется теми же инструментами, что и разделка обычных кабелей. Полимерная изоляция и фольга вскрываются резаками, а стальная проволока выкусывается бокорезами. Рекомендуется применять кабельные ножи: они позволяют снимать полимерное покрытия с кабеля диаметром от 4 до 35 мм, и при этом кабельный нож имеет специальную насадку, ограничивающую глубину разреза оболочки, что исключает повреждение оптоволоконных жил.


Но в дальнейшей работе без специальных инструментов все равно не обойтись:

  • ножницы или кусачки с керамическими лезвиями - используются для удаления армирующих нитей из кевлара. Обычные ножницы эти тонкие, гибкие и прочные волокна не режут, а выдавливают или гнут;
  • стрипперы - предназначены для снятия буферного слоя. Их применение снижает риск повреждения оптического волокна: в первую очередь из-за того, что его рабочие поверхности имеют фиксированную настройку;
  • скалыватель оптических волокон - применяется для отсекания лишнего отрезка волокна под углом 90 град. Скалыватели бывают ручные и автоматические. При подготовке оптоволокна для последующей сварки или соединения волокон при помощи сплайса рекомендуется использовать автоматические скалыватели, которые позволяют получить чистый и ровный скол без дефектов под углом 90±0,5 град. Например, скол с углом более 2 град. может привести к увеличению потерь в соединении до 1 дБ, что при оптическом общем бюджете системы в 15-25 дБ - зачастую непозволительная роскошь;
  • микроскопы позволяют диагностировать разъемы оптических волокон на качество полировки жилы, наличие трещин, царапин;
  • кримперы предназначены для обжимки наконечников, разъемов и контактов.

Способы соединения волоконно-оптического кабеля

Широко применяются три способа монтажа оптоволокна:

  • сварка оптических волокон;
  • соединение при помощи механических разъемов;
  • соединение при помощи сплайса.

Сварка оптических волокон

Осуществляется с помощью специальных сварочных аппаратов и обычно выполняется в три этапа:

  • подготовка и зачистка кабеля, получение качественного торца;
  • сваривание сварочным аппаратом;
  • тестирование и оценка качества соединения. Сварочный аппарат осуществляет соединение оптоволокна с хорошими параметрами места соединения просто и быстро. Современные сварочные аппараты позволяют снизить потери в месте соединения до 0,04 дБ и менее. Аппарат автоматически выполняет все необходимые операции: юстирует оптоволокна, расплавляет концы оптоволокон, сваривает их. Наиболее функциональные (но и, к сожалению, более дорогие) модели также проверяют качество соединения. После чего место сварки защищают, обычно при помощи термоусаживающей трубки.

Соединение при помощи механических разъемов

Сварка оптического волокна также используется при оконцовке волокна коннекторами. Для этих целей используются готовые волоконно-оптические перемычки -пигтейлы (англ. pigtail - гибкий проводник). Пигтейл обычно изготавливается в заводских условиях, он представляет собой отрезок оптоволоконного кабеля, который имеет с одной стороны оптический коннектор. Волокно оптического кабеля сваривается с волокном пигтейла, а уже при помощи коннектора его подключают к оборудованию.


Соединение при помощи сплайса

Сплайс - устройство для сращивания волоконно-оптического кабеля без применения сварки. В сплайс через специальные направляющие навстречу друг другу вводятся подготовленные концы оптических волокон и фиксируются в нем. Для уменьшения вносимых потерь стык между волокнами помещают в специальный (иммерсионный) гель, который зачастую находится внутри сплайса.

Технология соединения при помощи сплайса включает в себя несколько этапов:

  • разделка волоконно-оптического кабеля;
  • обработка торцов;
  • выполнение соединения;
  • тестирование и оценка качества соединения;
  • нанесение защитных покрытий, восстановление защитной оболочки и брони.

Применение сплайсов облегчает процесс сращивания оптоволокна, но работа с ними требует практических навыков. Вносимые потери при этом методе соединения волокон меньше, чем при использовании пары волоконно-оптических вилок и адаптера, но все же могут составлять 0,1 дБ и выше. Согласно требованиям стандартов на СКС IS0 11801, TIA EIA 568B вносимые потери в сплайсе не должны превышать 0,3 дБ. Для этого в ходе монтажа проводится корректировка положения волокон относительно друг друга, в процессе работ также необходимо проводить постоянный замер потерь на месте соединения.


Кроме того, следует принимать во внимание тот факт, что со временем потери в месте соединения при помощи сплайса могут увеличиться из-за смещения волокон в пространстве или высыхания иммерсионного геля.

Выводы

Материал, который здесь представлен, кому-то может показаться неполным, кому-то поверхностным. Я и не ставил себе задачу изложить всю информацию об инструментах и оборудовании, применяющихся при работе с оптоволокном - да и не уверен, что для этого хватит всего журнала: информации много, она разнообразна.

Но, для того чтобы приступить к работе, вполне достаточно начальных знаний и навыков. Читайте, спрашивайте, приходите на семинары и тренинги - поставщики оборудования должны быть сами заинтересованы в повышении вашей грамотности. Не боги горшки обжигали - и у нас все получится.

Буквально за пару последних десятилетий компьютерные устройства для связи, общения, работы или развлечений появились практически в каждой семье. Соединения абонентов осуществляются по телефонным линиям, радиоканалам, а в последнее время широко применяется оптоволокно.

Мне пришлось на собственном опыте оценить возможности этой технологии. На его основе публикую советы домашнему мастеру по подключению к интернет своего компьютера по оптоволоконному кабелю и созданию квартирной проводной и беспроводной сети с поясняющими картинками, схемами и видеороликом.


Первое знакомство с новой технологией

Полтора десятка лет назад на подстанцию 330 кВ, где я работал, пришло новое оборудование, осуществляющее регистрацию и обработку информации электрических сигналов от сети очень большего количества датчиков, расположенных в разных местах - регистратор «Парма».

Это обыкновенный компьютер со своим программным обеспечением, выполняющий чисто электротехнические задачи.

Его монтаж, подключение и наладка были поручены нам за исключением сборки и настройки оптоволоконных магистралей. Опыта работы с ними мы не имели.

До этого момента связь с этими датчиками происходила по обычным электрическим цепям, которые называют вторичными. Однако целая группа этих устройств находилась на большом удалении. Проект предусматривал обмен информацией с ними по оптоволоконному кабелю. Его внутрь кабельного канала мы укладывали сами, а подключением и проверкой занимался приехавший из Санкт Петербурга представитель производителя.

Именно тогда стало понятно, что без специализированного оборудования и должных навыков работать с оптоволокном нельзя. Своими руками с ним ничего сделать невозможно.

Конструкция оптоволоконного кабеля

Передача информации происходит по оптическим магистралям, состоящим из отдельных носителей, объединённых в общую конструкцию - кабель оптоволокна.

Принцип работы оптического носителя

Обмен информацией происходит за счет прохождения света лазера от встроенного светодиода. Его передача осуществляется импульсами двоичного кода в одном направлении. Поэтому для обмена сведениями создано сразу два индивидуальных канала.

О конструкции кабеля

Стекло относится к хрупким материалам. Его можно легко разбить, а оптоволокно работает за счет использования стеклянных волокон. Понятно, что они требуют надежной защиты как от механических повреждений, так и от потерь световой энергии.

С этой целью оптические носители разными способами объединяют в жесткие модули и создают из них оптоволоконный кабель. Он может быть разной конструкции. Одна из них показана на схеме.

У нас на подстанции были использованы два вида кабеля: один диаметром 6 мм, а второй толщиной указательного пальца руки.

Довольно подробно вопрос этой технологии изложен в видеоролике GalileoRU «Оптоволокно».

Прокладка оптоволокна на местности

Прошлой зимой около нас проводилась механизированная укладка такого кабеля непосредственно в грунт.

Работу выполняли три, а на сложном рельефе четыре трактора, сцепленные цугом. Они тащили плуг кабелеукладчика, заглубленный в землю на полтора метра. На тележке этого механизма расположена большая кабельная катушка, которая при ручном раскручивании оператором выдает кабель через каналы плуга в прорываемую траншею.

Сверху оптоволокна на слой земли автоматически укладывается хорошо видимая сигнальная лента. Сразу же происходит ее засыпка грунтом, а на поверхности почвы остается след углубления порядка двадцати сантиметров или чуть больше.

Через какое-то время все неровности сравняли ножом бульдозера легкого колесного трактора. Летом маршрут прокладки зарос травой. Но на местности его можно восстановить по бетонным столбикам.

Технология подключения

На подъездной доске объявлений увидел заинтересовавшее меня сообщение от Белтелеком.

Оно же было размещено на всех рядом расположенных зданиях. Таким оригинальным способом провайдер сообщал, что эра пользования медными телефонными кабелями в нашем районе заканчивается, а расположенные рядом АТС в скором времени прекратят свою работу.

Все пользователи стационарных телефонов должны сделать выбор:

  • согласиться с переходом на новое оборудование, предлагаемое провайдером;
  • или отказаться, оставшись на старом медном кабеле.

Выбор добровольный, но очень скоро АТС будет остановлена: телефонная связь по медному кабелю автоматически прекр к интерне атится. Придется заключать повторный договор и платить деньги за эту услугу. Замену же старого оборудования и монтаж нового сейчас провайдер выполняет за собственные деньги, клиентам это все предоставляется бесплатно.

Сразу замечу, что меня не удовлетворяла. Интересовал безлимитный интернет по выгодному тарифу от провайдера.

Поэтому дал согласие провайдеру чтобы интернет подключить через оптоволокно.

Проводимые работы выполнялись в три этапа:

  1. Монтаж сети оптоволокна;
  2. Получение нового модема и его установка;
  3. Создание и подключение оборудования домашней сети к интернет через оптоволокно.

Монтажные работы

Буквально через несколько дней после расклейки объявлений в доме появились бригады монтажников с . Грохот от них не смолкал два дня. Панельная конструкция пятиэтажного здания обладает хорошей акустикой: звуки распространяются во все стороны.

Работа выполнялась одновременно в подъездах и квартирах.

Монтаж оборудования в подъезде

Внутри дома работали две отдельные бригады.

Первый день

Электромонтажники пробивали небольшие отверстия через межэтажные перекрытия, крепили пластиковые пеналы и укладывали в них оптоволоконный кабель диаметром 6 мм.

К концу дня он висел свернутыми кольцами над каждой дверью.

Окончание каждого было закрыто специальной заглушкой.

Последующие дни

Посередине лестничной площадки вдоль стены пробивали отверстия в бетонных плитах под пластиковые трубы диаметром 4 см.

Это наиболее громкий период работы. Если грохот первого дня можно удовлетворительно перетерпеть, находясь в квартире, то на этом этапе лучше удалиться подальше и до вечера провести время в другом месте.

Процесс заканчивается установкой оборудования оптических распределительных коробок и пластиковых труб для кабелей оптоволокна.

Для питания мощного перфоратора электромонтажники использовали катушку удлинитель и подключались к розетке домофона, вскрыв общеподъездную коробку.

Выдергивая шнур питания электромагнитов двери они создав несанкционированный доступ любых людей в подъезд. Свой удлинитель включали в эту розетку.

Какие стояли в воздухе и что было раскидано по всему подъезду описывать не буду. Наведение обычного порядка заняло не один день.

Монтаж оборудования в квартире

Параллельно с работами в подъезде специалист провайдера заключал договор с клиентами, разъяснял требования безопасности по обращению с хрупким оптоволокном, помогал советами по выбору места установки оптической розетки.

Ее монтаж могут выполнить в любом месте. Я выбрал угол коридора около домофона и старой . Высота модема на уровне колена вполне устраивала.

Длина оптоволоконного кабеля по квартире составила всего несколько десятков сантиметров. Отверстие пробили перфоратором на уровне плинтуса.

Через него со стороны подъезда просунули отрезок стальной проволоки.

На обратной стороне изолентой был примотан конец оптоволоконного кабеля.

От этого места закрепили пластиковые короба.

Установили корпус оптической розетки на стену.

Уложили оптоволокно, сделав небольшую бухту в специальных пазах.

Закрыли короба крышками.

Окончание этих работ было зафиксировано в документации мастера электромонтажников и заверено моей подписью.

Важным требованием по месту установки модема является наличие рядом с ним электрической розетки для подключения блока питания. Его относительно короткий шнур ограничен расстоянием до одного метра.

Мне пришлось дополнительно заняться специально для модема. : около плинтуса. Расположение в углу ограничивает случайный доступ к ней.

Получение модема и подготовка к переключениям на оптоволокно

Через несколько дней у меня в почтовом ящике появилось извещение от провайдера с предложением прибыть в сервисный центр для документального оформления нового договора.

Организационные вопросы

Когда пришел в сервисный центр, то скопления клиентов и очереди не было. Указанная дата и время прибытия оправдали мои ожидания.

Оператор провайдера быстро выполнила свою работу, а я получил на руки оформленную документацию и коробку с модемом.

Удивило то, что, получая в прошлый раз ADSL модем и соответствующие аксессуары к нему, все оборудование было уложено в фирменный полиэтиленовый пакет с рекламой компании. Сейчас же эту коробку пришлось засунуть под мышку: провайдер сэкономил на таре.

Оператор разъяснил, что устанавливать модем и прокладывать проводную сеть от него прибудет бригада электромонтажников. Работы будут выполняться по наряду. Оформленный бланк для его проведения она вложила в коробку. Момент окончания монтажа я обязан подтвердить своими подписями и должен передать оформленный документ мастеру.

Затем последует очередной этап: прибудет специалист сервисного центра для подключения к интернет моего оборудования через оптоволокно. В его же задачу входит снятие ADSL модема телефонной сети, сплиттера и лишних кабелей.
Я, как клиент провайдера, обязан вернуть в сервисный центр снятое оборудование в день перехода на оптоволокно или в крайнем случае на следующий.

Технические мероприятия

Через несколько дней после посещения сервисного центра ко мне в квартиру прибыли два электромонтажника. Я передал им модем оптоволокна для установки на стену.

Его монтаж выполнен быстро: пробили два отверстия перфоратором и через дюбеля закрепили саморезами корпус, вставили в него модем, подключили оптоволоконный кабель.

В квартире по периметру пола расположены пластиковые плинтуса. Внутрь их скрытно проложили два провода витой пары от модема к телефону и телевизору. Меня беспокоила их длина: предполагал, что она ограничена стандартными размерами.

Но вопрос решился очень просто. У монтажников большая бухта такого кабеля. Они отрезают необходимый кусок, укладывают его, а затем оконцовывают со всех сторон.

Обжим наконечников разъемами RJ-45 кабеля приставки интерактивного телевидения и RJ-11 для телефона выполняли клещами REXANT.

После выполнения этих операций я расписался в наряде и отдал его мастеру электромонтажников.

Создание и настройки сети интернет

Схема ввода

Фактически сеть для подключения модема оптоволокна к интернет была собрана. Осталось перекоммутировать на него управление телефоном, телевизором и компьютером, подать напряжение питания, выполнить наладку всех устройств.

Эта схема очень напоминает работу через медный телефонный кабель. Отличие в том, что здесь стационарный телефон подключен после модема и теряет свою автономность при его отключении.

Если пропадает напряжение питания бытовой сети 220 вольт, то любой модем всегда отключается. Когда он работает по технологии ADSL, то телефон с линией АТС остается соединенным через сплиттер, а связь старых аппаратов без отдельного блока питания не теряется. Абонент может позвонить куда угодно, включая экстренные службы помощи для решения своих вопросов.

В схеме подключения к сети интернет через оптоволокно этой возможности нет. Остается надежда только на мобильную связь.

Наладочные работы

После завершения всех операций электромонтажниками осталось подключить оптоволоконное оборудование, выполнить настройки компьютера, сети Wi-Fi, телефона, телевизора под его характеристики. Этими вопросами занялись специалисты провайдера, прибывшие через три дня ожидания.

Один из них подал питание на модем оптоволокна, достал ноутбук и стал выполнять его настройки.

Ввел необходимые данные для подключения телефон по новой сети.

Настройка пароля сети Wi-Fi и всего оборудования выполняется специалистом провайдера. Это отличие от подключения к интернет по кабельной телефонной линии, где обычный пользователь может входить в настройки модема через патч корд и менять пароли по своему усмотрению.

Однако продвинутый пользователь имеет возможность изменять настройки оптоволоконного модема за счет входа в роутер по адресу 192.168.100.1 через заводской логин и пароль, которые провайдер не изменяет.

Второй работник за это время разобрал схему питания ADSL-модема, переключил кабели управления телевизором и телефоном на оптоволокно. Он же собрал все старое оборудование, которое подлежит сдаче.

Проверили скорость интернета на компьютере.

Меня еще раз предупредили, что необходимо ехать в сервисный центр провайдера, сдать старое оборудование: ADSL-модем, сплиттер и кабели к ним, перевести деньги со старого счета на новый.

При переходе на оптоволокно пользователю предоставляется новый кабинет на сервисе провайдера, а старый прекращает действовать: до момента пополнения денег на нем интернет перестанет работать.

Перспектива остаться без интернета на время более суток меня не устраивала. Спросил, как можно решить этот вопрос. Мне помогли оформить обещанный платеж, который необходимо подтвердить реальной оплатой в течение трех дней.

Все эти операции заняли около 10 минут. Я поблагодарил специалистов провайдера за выполненную работу и отправился в сервисный центр, где быстро удалось решить все вопросы и сменить тарифный план на более выгодный.

Когда вечером пришел домой, то обнаружил, что стационарный телефон перестал работать. Это расстроило. Искать специалистов было поздно. Оставил это занятие на следующий день.

Утром телефон уже работал на новом номере, а скорость интернета резко увеличилась.

Таким образом произошло подключение к сети интернет через оптоволокно моего компьютера.

Владелец видеоролика Diplomatrutube подробно объясняет вопрос как «Технология PON проходит путь от телефонной станции до квартиры».

Если у вас остались вопросы по теме, то задавайте их в комментариях.