Где находится экзопланета проксима b. Астрономы нашли самую близкую землеподобную планету. Глядя в зеркало

  • 16.03.2024

Спустя годы тщательных поисков, наблюдений и исследований международная команда ученых обнаружила неопровержимые доказательства существования планеты, вращающейся вокруг ближайшей к солнцу звезды - Проксимы Центавра. Этот красный карлик является частью соседней звездной системы Альфа Центавра. На сегодняшний день эта экзопланета является, пожалуй, одной из самых захватывающих космических находок последнего времени.

Новая экзопланета

Планета называется Проксима Центавра b (сокращенно Проксима b) и, по всей вероятности, только немногим больше Земли. Кроме того, планета находится на таком расстоянии от звезды, чтобы обеспечить идеальную температуру для появления воды на поверхности.

Проксима Центавра - слабая карликовая звезда, находящаяся на расстоянии четырех световых лет от Земли. Несмотря на сравнительно небольшую дистанцию, с поверхности нашей планеты Проксиму нельзя увидеть невооруженным глазом, она слишком мала. Самая ближайшая видимая звезда - Альфа Центавра. Проксима наверняка связана с Альфой (которая является двойной звездой) гравитационным полем.

Поиски новых миров

Как только ученые осознали возможность существования похожих на Землю экзопланет, их телескопы обратились к ближайшей звезде. Новое открытие произошло в результате тщательного исследования данных, собранных Южно-Европейской Обсерваторией на протяжении 14 лет, с 2000 по 2014. Подтверждающие данные были собраны в первой половине 2016 года.

Открытие экзопланеты было сделано с помощью эффекта Доплера, который позволяет с высокой точностью наблюдать лучевую скорость небесного объекта и по ее изменению определять длину волн световых колебаний.

Что мы знаем о новой планете?

Как минимум одна планета, вращающаяся вокруг Проксимы Центавра, существует вне всяких сомнений. Ее солнечный год состоит из одиннадцати дней, потому что расстояние между планетой и звездой не превышает семь миллионов километров - гораздо меньше, чем между Солнцем и Меркурием. Из наблюдений следует, что Проксима b сравнительно небольшого размера, ее минимальная масса составляет 1.27 массы Земли.

По сравнению с пылающей поверхностью Солнца, Проксима Центавра больше похожа на небольшой раскаленный уголек. Например, если бы новая планета находилась на таком же расстоянии от Проксимы, как Земля от Солнца, она была бы полностью замерзшей. Однако температура поверхности Проксимы b может как раз идеально подходить для жизни. Если новая экзопланета в действительности похожа на Землю, то она расположена как раз в правильном месте для существования воды на поверхности.

Возможность существования жизни

Мы знаем, что Проксима b - подходящего размера, находится в подходящем месте и, вероятно, поддерживает подходящую температуру, но достаточно ли этих характеристик для образования жизни на планете? Возможно, но для этого должен идеально совпасть еще ряд других характеристик.

Из-за того, что Проксима b расположена так близко к своей звезде, она, почти точно, вращается синхронно, находясь в приливном захвате. Это значит, что планета повернута к звезде только одной стороной, и ее позиция не меняется. Получается, что на одной половине планеты всегда свет и тепло, а на другой - тьма и холод.

На протяжении многих лет ученые полагали, что подобные условия никак не могут поддерживать жизнь. Темная сторона должна быть настолько холодной, что любая существующая атмосфера просто примерзнет к поверхности, оставив планету без воздуха. Однако более поздние модели предполагают, что и в условиях приливного захвата может сохраниться атмосфера, если она правильного состава и если температура ядра планеты, а также поверхности ее светлой части, достаточна для того, чтобы обеспечить минимальным теплом темную сторону. В таких условиях темная сторона тоже может быть вполне обитаемой.

На сегодня у ученых недостаточно информации, чтобы определить, может ли Проксима b поддерживать жизнь на своей поверхности.

Магнитосфера и звездная активность


Приливной захват - не единственная возможная проблема на пути существования жизни на Проксиме b. Проксима Центавра является активной звездой, и часто на ее поверхности происходят сильные бури, мегавспышки и корональные выбросы массы, которые способны уничтожить любую атмосферу планеты, вращающейся вокруг нее.

Этого не происходит с Землей, даже несмотря на то, что Солнце активнее и больше, чем Проксима Центавра, потому что у нашей планеты сильная магнитосфера, защищающая нас от вредной солнечной активности. Если подобная магнитосфера есть и у новой планеты, то она оснащена своеобразным щитом, защищающим не только атмосферу, но и саму поверхность.

Предполагаемая масса Прксимы b намекает на то, что при похожем на Землю составе,у нее вполне может быть собственное защитное магнитное поле. Возможно, эта планета на самом деле пригодна для обитания.

Конечно, ученым пока слишком мало известно о новой планете, и возможности ее изучения крайне ограничены. Однако с постоянным развитием новых технологий остается надеяться, что совсем скоро мы узнаем больше о возможном близнеце нашей Земли.

Расположенная ближе всего к нашей Солнечной системе экзопланета, обращающаяся вокруг звезды Проксима Центавра всего в 4,2 световых годах от Солнца, как подтверждают результаты всестороннего компьютерного моделирования, является пригодной для жизни. Такие выводы позволили сделать новейшие расчеты моделей, сделанные на основе уже известных о планете Проксима b данных.

Художественное представление планеты Проксима b на фоне ее звезды Проксима Центавра и ее звезд-спутников Альфа Центавра А и В. Copyright: ESO/M. Kornmesser

Команда исследователей под руководством Энтони Дель Генио из Годдардовского института космических исследований NASA написала в новом номере журнала Astrobiology, основываясь на оценках компьютерных моделей, которые используются для моделирования изменения климата на Земле, но уже с данными, известными о Проксима Центавра b.

Результаты моделирования показывают, что Проксима b даже при различных сценариях может иметь на своей поверхности большие объемы жидкой воды, по причине чего вероятность наличия жизни на этой планете значительно возрастает. «Ключевым результатом нашего комплексного моделирования является то, что вероятность пригодности планеты для существования жизни действительно чрезвычайно велика», - говорит Дель Генио.

Сама Проксима Центавра представляет собой прохладную красную карликовую звезду, расположенную на расстоянии 4,2 световых лет от Солнца. И хотя располагается она к нашей Солнечной системе столь близко, астрономы пока слишком мало знают об окружающей этого красного карлика системе. И даже первая, и до сих пор единственная известная планета этой звезды (Проксима Центавра b), была открыта только в 2016 году. Проксима b в 1,3 раза превышает размеры Земли, а один оборот вокруг своей звезды она совершает всего за 11 суток.

«Мы предполагаем, что планета обладает атмосферой и океанами на поверхности, при этом она обращается вокруг своего светила в пределах его зоны жизни», - говорят исследователи. - «Благодаря этому, планета получает достаточно света, чтобы температуры у поверхности поддерживались выше точки замерзания воды». Но так как планета обращается вокруг своей звезды на достаточно близком расстоянии, нельзя исключать, что между ними существует такая же связь, как у Земли с Луной, то есть планета остается постоянно повернутой к звезде только одной стороной.

В то время, как более ранние модели предполагали, что нагревается только повернутая к звезде сторона планеты, а на обратной ее стороны океаны замерзают, Дель Генио тоже не стал исключать возможность такой оттаявшей в форме глазного яблока, повернутой к звезде гемисферы, пригодной для жизни - так называемой «планеты-глазного яблока».

Так художник видит «планету-глазное яблоко». Copyright: NASA/JPL-Caltech

Комплексность нового моделирования превзошла все предыдущие расчеты моделей, и в них были включены также данные динамики циркуляции океана и атмосферы, благодаря которой происходит глобальное распределение тепла.

При таком положении вещей, вполне можно допустить, что хотя отвернутая от светила сторона никогда не видит «солнечных лучей», но вдоль экватора вокруг всей планеты тянется полоса жидкой воды. Нечто подобное наблюдается и на нашей Земле, где благодаря Гольфстриму на Восточном побережье США всегда значительно теплее, чем это могло быть без этого теплого течения из тропиков.

В общей сложности ученые группы Дель Генио тщательно проверили 18 потенциальных планетарных сценариев, где рассматривались варианты с эффектами больших континентов, тонкой атмосферы, различных атмосферных составов и даже воздействие различных концентраций соли в предполагаемом океане.

И почти все эти варианты показали, что, как минимум, части этой планеты должны оставаться достаточно теплыми для того, чтобы на поверхности сохранялась жидкая вода и океаны. «Чем больше поверхность потенциально жидкой воды, тем большей видится и вероятность, что с помощью телескопов будущих поколений мы сможем разглядеть там и жизнь», - помечтал напоследок Дель Генио.

С самого начала космической эры люди использовали химические ракеты для того, чтобы попасть в космос. Хотя этот метод безусловно эффективен, он весьма дорог и требует много ресурсов. Ученые заинтересовались вопросом – а смогут ли гипотетические инопланетяне покинуть свои планеты с использованием похожих технологий?

Два исследования

Гарвардский профессор Абрахам Леб и астроном Майкл Гиппке, независимый исследователь, связанный с Зоннебергской обсерваторией, попытались проанализировать этот вопрос в двух недавно опубликованных документах . Профессор Леб рассматривал проблемы, с которыми внеземные существа могут столкнуться при запуске ракет с Проксима b. Исследование Гиппке посвящено похожему вопросу – смогут ли инопланетяне, живущие на сверхземле, попасть в .
В своем исследовании Леб утверждает, что нам, людям, повезло жить на планете, которая хорошо подходит для космических запусков. Чтобы ракета покинула поверхность Земли и стала обращаться вокруг Солнца как его спутник, ей необходимо достичь скорости 11,186 км/с. Скорость, необходимая для того, чтобы уйти с орбиты Земли и покинуть Солнечную систему, составляет около 42 км/с относительно Солнца.

Профессор Леб говорит:

«Разгон ракеты до космических скоростей требует огромной массы топлива, которая растет экспоненциально. По счастливому совпадению скорость ухода с орбиты Земли вокруг Солнца находится на пределе скорости, достижимой химическими ракетами. Однако зона обитаемости вокруг более слабых звезд находится ближе к ним, что серьезно усложняет возможность для химических ракет вырваться из гравитационных клещей своей звезды».

Как указывает Леб в своем эссе, скорость убегания вычисляется как квадратный корень звездной массы, деленный на расстоянии от звезды. Это означает, что скорость покидания обитаемой зоны прямо пропорциональна звездной массе и обратно пропорционально расстоянию от звезды.

Эта инфографика сравнивает орбиту планеты вокруг Проксима Центавра (Proxima b) с той же областью Солнечной системы.

Близость к звезде не очень хороша для планет, которые вращаются вокруг звезд М-типа (красных карликов). Эти звезды являются наиболее распространенным типом звезд во Вселенной, составляя около 75% таких объектов в Галактике Млечный Путь. Кроме того, недавние исследования обнаружили множество скалистых планет, вращающихся вокруг звезд типа красных карликов, и некоторые ученые считают, что такие планеты являются наиболее перспективным местом для поиска потенциально пригодных для жизни миров.

Можно ли улететь с Проксимы b?

Используя для примера ближайшую звезду к нашему собственному миру (Proxima Centauri), Леб поясняет, что ракете с использованием химического топлива будет намного сложнее достичь скорости вылета с планеты, расположенной в ее обитаемой зоне.
«Ближайшая к Солнцу звезда, Проксима Центавра, является примером слабой звезды, имеющей только 12% массы Солнца», – заявил он. «Пару лет назад было обнаружено, что эта звезда имеет планету размером с , названную Proxima b. Она находится обитаемой зоне, которая в 20 раз ближе к звезде, чем Земля удалена от Солнца. В этом месте скорость вылета на 50% больше, чем на орбите Земли вокруг Солнца. Цивилизации на Proxima b будет трудно покинуть свой мир с помощью химических ракет».

Что исследовал Гиппке?

Исследование Гиппке начинается с утверждения о том, что Земля, на самом деле, не может быть самым распространенным типом планет в нашей Вселенной. Например планеты, которые являются более массивными, чем Земля, будут иметь более высокую поверхностную гравитацию, а это означает, что они смогут удерживаться более плотную атмосферу, что обеспечит ей защиту от вредных космических лучей и солнечной радиации.


Представление художника о Суперземле, классе планет, который имеет много масс Земли, но меньше, чем планета Уран или Нептун. Источник: NASA / Ames / JPL-Caltech.

Кроме того, планета с более высокой гравитацией имела бы более плоскую топографию, в результате чего у нее были бы архипелаги вместо континентов и более мелких океанов – идеальная ситуация, если речь идет о развитии биоразнообразия. Однако, когда дело доходит до запуска ракет, повышенная поверхностная гравитация будет означать необходимость набора более высокой скорости полета. Как указал Гиппке в своем исследовании:

«Движение ракет подчиняется уравнению Циолковского (1903): если ракета несет топливо, отношение общей массы ракеты к конечной скорости является экспоненциальной функцией, что делает высокие скорости (или тяжелые нагрузки) более дорогими».

Для своих расчетов Гиппке использует Кеплер-20 b, «Суперземлю», расположенную в 950 световых годах от нас. Эта планета имеет размер, в 1,6 раза превышающий размер Земли и она в 9,7 раза больше нашей планеты по массе. В то время как скорость покидания телом орбиты вокруг Земли составляет примерно 11 км/с, ракета, пытающаяся покинуть сверхземлю, подобную Кеплер-20 b, должна была бы достичь скорости вылета ~ 27,1 км/с. В результате одноступенчатая ракета на Кеплере-20 b должна была бы сжечь в 104 раза больше топлива, чем ракета на Земле, для того, чтобы выйти на орбиту.

Чтобы представить все это более наглядно, Гиппке рассматривает конкретные полезные нагрузки, запускаемые с Земли. «Чтобы вывести полезную нагрузку в 6,2 т, как это требуется в случае с космическим телескопом им. Джеймса Вебба с планеты Кеплер-20 b, топливная масса увеличится до 55 000 т, что равно массе крупнейших океанских линкоров», – пишет он. «Для классической Аполлонов на Луну (45 т) ракета должна быть значительно больше, ~ 400 000 т».


Проект Starshot, призванный стать первым межзвездным путешествием человечества.

Анализ, проведенный Гиппке, позволяет сделать вывод о том, что химические ракеты все же будут обеспечивать необходимые для вылета с планеты скорости на сверхземлях, имеющих до 10 масс Земли. Однако количество требуемого для этого топлива топлива делает этот метод нецелесообразным. Как отметил Гиппке, это может серьезно повлиять на развитие чужой цивилизации.

«Я удивляюсь тому, как удачно мы, люди, оказались на планете, которая достаточно удобна для выполнения космического полета», – сказал он. «Другие цивилизации, если они существуют, могут быть и не такими удачливыми. На более массивных планетах космический полет будет более дорогим, причем его возможность будет убывать по экспоненте в зависимости от массы планеты. У таких цивилизаций не будет спутникового телевидения, миссии на Луну или космического телескопа Хаббл».

Обе эти статьи дают некоторые явные выводы, которые касаются поисков внеземного интеллекта (). Во-первых, это означает, что цивилизации на планетах, которые вращаются вокруг красных карликов или суперземель, с меньшей вероятностью освоят космическое пространство, что затруднит их обнаружение. Результаты исследования указывают также на то, что человечество может быть одной из немногих цивилизаций, которым дана возможность исследовать космос путем .

В августе 2016 года сотрудники Европейской южной обсерватории объявили об удивительном открытии. Оказалось , что вокруг Проксимы Центавра, ближайшей звезды всего в 4,25 световых лет от нас, с периодом 11,2 земных суток вращается необычная экзопланета - Проксима Центавра b. Ее главная особенность в том, что вероятность наличия жизни на ней крайне высока, хотя условия, в которых Проксима Центавра b находится, совсем не такие, как в Солнечной системе. А раз так, рассказ об этой далекой-близкой планете имеет непосредственное отношение к нашей любимой биологии.

Вообще, мы серьезные люди. Гранит науки хрустит на наших зубах. Мы освещаем такие суровые, такие сложные закоулки биологического знания, до которых не дотянулись фонари других научно-популярных сайтов. Но иногда нам так хочется подурачиться. И рассказать о науке веселым языком, показать ее под другим углом. Нарисовать забавных картинок, написать легкий и смешной текст. Поэтому мы и открыли новую рубрику - «12 биологических новостей в картинках».

Интеллектуальный партнер этих иллюстрированных рассказов - АО РВК .

Информация о существовании Проксимы Центавра b (коротко - просто Проксимы b) просочилась в сеть 12 августа 2016-го. Буквально через две недели после этого, 24 августа, сотрудники Европейской южной обсерватории подтвердили слухи об открытии новой планеты . А в интернете появилось сразу несколько препринтов научных статей, авторы которых обсуждали ее обитаемость . Впоследствии ряд этих статей вышел в журнале Astronomy & Astrophysics .

Для начала надо сказать, как планету открыли. Не все биологи сильны в физике, так что тем более стóит отметить метод, позволивший «увидеть» потенциальную ближайшую к нам обитаемую планету. Он носит название метод лучевых скоростей или метод Доплера . Дело в том, что не только звезда влияет на принадлежащие ей планеты, но и планеты изменяют поведение своей звезды. Гравитация планеты немного сдвигает радиальную скорость связанной с ней звезды, как бы раскачивая ее. Изменения такого рода регистрируют спектрографы, ведь при этом спектр звезды меняется.

Чтобы планета существенно влияла на движение своей звезды, она должна быть довольно крупной - иметь массу никак не меньше земной, а лучше хотя бы в несколько раз больше. Так что можно точно сказать, что Проксима b «упитаннее» нашего космического дома. Известно даже, насколько - в 1,3 раза.

Что еще мы знаем об этой планете? Известно, что она на 300 миллионов лет старше Земли, а значит, если жизнь там когда-то возникла, у нее было больше времени на развитие. Как знать, может, проксимовцы уже разрабатывают аппараты, способные летать не намного медленнее скорости света? Как бы то ни было, слетать проверить это мы пока не можем: с нашими нынешними космическими движками это займет десятки тысяч лет, и то при условии, что на полет потратят триллионы долларов.

Также известно, что «хозяйка» Проксимы b, звезда Проксима Центавра, - красный карлик . Спектр излучения звезд такого типа резко отличается от солнечного. Красные карлики выдают гораздо больше ультрафиолета, чем желтые, такие как Солнце. Кроме того, они «балуют» свои планеты рентгеновским излучением. Но в случае Проксимы b это может быть не так страшно. Атмосфера там, судя по всему, весьма плотная, хорошо задерживающая разные пагубные лучи. Тем не менее на заре своих времен планета вряд ли была обитаема: тогда Проксима Центавра выдавала очень уж много ультрафиолета и рентгеновского излучения, и только потом «остепенилась».

Как описать пригодность для жизни?

Пригодность планеты для жизни определяют несколько параметров:

  • относительно небольшой размер и масса (примерно как у Земли);
  • температура хотя бы местами выше нуля по Цельсию, но не намного;
  • наличие жидкой воды;
  • отсутствие жестких видов излучения, способных повредить ДНК и другие биологические молекулы.

Это не весь список, но, пожалуй, основные критерии в нем перечислены. Иными словами, потенциально жизнепригодные планеты должны быть во многом похожи на Землю. И немудрено: это единственная известная нам планета, которая абсолютно точно обитаема.

Более подробные рассуждения насчет пригодности разных планет для жизни можно увидеть в статье «Дикий-дикий космос » , ну а что касается нашей Земли - тут лучше всего ознакомиться с книгой Михаила Никитина «Происхождение жизни. От туманности до клетки » .

Жесткое ультрафиолетовое излучение играет с жизнепригодностью злую шутку, потому что расщепляет молекулы воды на водород и кислород. Водород к тому же легко улетучивается с планет с умеренной гравитацией. Раз так, ученым следовало подсчитать, сколько воды могла потерять Проксима b за то время, пока ее красный карлик «плохо себя вел». Пусть плотность атмосферы этой экзопланеты примерно такая же, как у Земли. Тогда Проксима b могла потерять от 0,4 до 0,9 от объема земных океанов. Кажется, что это много, а на деле - довольно мало, если учесть, что наша Земля за свою историю потеряла четверть, а то и больше воды своих океанов. А кроме того, существенная часть потерь может быть восстановлена за счет воды, содержащейся в мантии планеты. Раз так, скорее всего, воды на Проксиме b сейчас хватает. Притом эта вода жидкая: планета в 20 раз ближе к своей звезде, чем Земля к Солнцу, а стало быть, там довольно тепло.

В октябре 2016 даже появилась гипотеза, что океан на Проксиме b может иметь глубину до 200 километров , . Она основана на расчетах диаметра планеты в зависимости от ее состава при известной массе (напомним, это 1,3 земной). По мнению авторов научной статьи, Проксима b наверняка имеет компактное ядро из силикатов, сверху покрытое водой. Масса воды составляет едва ли не половину от массы всей планеты.

Самое интересное, что подобное обилие воды не помогает жизни, а скорее снижает вероятность ее наличия на Проксиме b. Дело в том, что такая толща H 2 О создает у дна слишком сильное давление. В таких условиях даже горячая вода может превратиться в экзотический вариант льда - настолько необычный, что на Земле его нет. Он вберет в себя до 95% от общей массы воды на планете. Но лед - он и есть лед: его корка не даст океану сообщаться с силикатным ядром, а значит, соли будет неоткуда взяться. Ну а дистиллированная вода - далеко не лучшее место для возникновения и поддержания жизни. Вспомним школьно-хрестоматийные клетки крови, набухающие и даже лопающиеся под действием воды с минимальным содержанием солей.

С другой стороны, такая суровая модель Проксимы b - крайность. Океан там может быть и не настолько глубоким, все зависит от физических параметров, «вбиваемых» в программу. Их значения только предстоит экспериментально подтвердить.

Что касается климата, тут вопрос сложный. Планета находится близко к своей звезде, а значит, их взаимное притяжение может мешать Проксиме b вращаться вокруг своей оси. Как итог, планета, вероятно, все время повернута к своему светилу какой-то одной стороной, очень теплой, а другое ее полушарие все время холодное. Правда, разницу температур «дневной» и «ночной» сторон может существенно сгладить плотная атмосфера. Она, скорее всего, на Проксиме b есть.

Кстати, расчеты, опубликованные уже в 2017 году , понизили вероятность того, что планета толком не вращается вокруг своей оси . Они показали, что орбита Проксимы b довольно-таки вытянутая: ее эксцентриситет составляет 0,25. А это означает, что как минимум в крайних точках своей орбиты планета не так уж сильно притягивается звездой. Вероятно, на ней, как и на нашем Меркурии, сутки равны 2/3 от ее же года и в данном случае длятся около одной земной недели. Все вместе это означает, что разница в климате в различных точках экзопланеты не столь велика, так что шансы обнаружить там жизнь повышаются.

Один из самых выдающихся астрономов 2016 года по версии журнала Nature Гиллем Англад-Эскуде даже пофантазировал на тему того, как такая жизнь будет выглядеть . Он рассказал в интервью одному испанскому научно-популярному изданию , что «проксимианские» растения, если таковые имеются, выглядят необычно, потому что в излучении Проксимы Центавра больше всего не различимой для нашего глаза инфракрасной части спектра. Зато видимого света зеленых оттенков, как у Солнца, этот красный карлик почти не дает. Таким образом, чтобы максимально эффективно выживать под его лучами, растениям на Проксиме b хорошо бы иметь красноватый оттенок, а никак не зеленый.

Необычно может выглядеть не только местная флора. Фауна у красных карликов тоже будет слегка непривычной. Если предположить, что биосфера там дошла до крупных многоклеточных, то среди них не будет аналогов белых медведей, песцов и прочих зайцев в зимней раскраске. Она там просто не имеет смысла. 95 процентов излучения Проксимы Центавра - инфракрасное. Снег и лед в нем «черные», то есть хорошо поглощают свет и, в отличие от Земли, быстро тают даже при коротком дне. Устойчивый снежный покров зимой в таких условиях маловероятен - так же, как и животные в «зимней» маскировочной окраске.

В общем, есть ли на Проксиме b жизнь или нет, стопроцентно достоверно сказать пока не получится. Но имеющаяся на данный момент информация свидетельствует: пациент скорее жив, чем мертв. И если он жив, мы теоретически можем увидеть на нем много интересного.

Литература

  1. Guillem Anglada-Escudé, Pedro J. Amado, John Barnes, Zaira M. Berdiñas, R. Paul Butler, et. al.. (2016). A terrestrial planet candidate in a temperate orbit around Proxima Centauri . Nature . 536 , 437-440;
  2. Ортега И. (2016). Европейские учёные высоко оценили жизнепригодность Проксимы b . «Лайф» ;
  3. Martin Turbet, Jérémy Leconte, Franck Selsis, Emeline Bolmont, François Forget, et. al.. (2016). The habitability of Proxima Centauri b . «Лайф» ;
  4. Ортега И. (2016). Астроном года: Планета у ближайшей звезды покрыта странной растительностью . «Лайф» ..

Возможно, мы нашли вторую Землю?

У ближайшей к Солнцу звезды обнаружена планета, возможно, пригодная для жизни; воображение уже рисует на ней плотную атмосферу и океаны.

Найденная планета, получившая название Proxima b , имеет почти круговую орбиту, от звезды ее отделяет примерно 7,6 миллионов километров (0,05 астрономической единицы, то есть среднего расстояния Земли от Солнца). Год в этом мире длится всего 11 дней, масса планеты превышает земную в 1,3 раза, а средняя температура поверхности близка к нулю градусов Цельсия - это всего на десять градусов ниже, чем у Земли, и на несколько десятков градусов выше, чем у Марса.

По космическим меркам Проксима Центавра совсем рядом – всего-то 4,24 светового года.

Помешать появлению этого рая может сама родительская звезда Проксима Центавра, для которой характерны сильные ультрафиолетовые и рентгеновские вспышки. Об этом рассказывается в исследовании, опубликованном в журнале «Nature».

Компьютерное моделирование давно подсказывало астрономам, что у нашей соседки есть как минимум одна планета, да и в основном экзопланеты находят именно у красных карликов.

Открытие Проксима б было совершено посредством наблюдения доплеровского смещения спектра звезды, обусловленного гравитационным воздействием планеты. Работа выполнена на двух научных инструментах Европейской южной обсерватории - HARPS (High Accuracy Radial velocity Planet Searcher) и UVES (Ultraviolet and Visual Echelle Spectrograph).

Несмотря на, казалось бы, катастрофическую близость к светилу, этот мир может быть очень неплох с точки зрения поддержания жизни, ведь - холодные звезды.

Температура поверхности Проксима Центавра более чем в два раза (почти на три тысячи кельвинов), масса - в десять раз, а светимость - на четыре порядка меньше, чем у Солнца.

И чтобы вода на поверхности планеты не замерзла, она должна быть приближена а своей звезде гораздо больше, чем Земля к Солнцу.

В Солнечной системе в подобной зоне расположены Венера, Земля и Марс, а интервал расстояний для системы Проксима Центавра составляет от 0,04 до 0,08 астрономической единицы. Казалось бы, все говорит в пользу возникновения жизни, но есть один неприятный момент, который может перечеркнуть все преимущества.

Отличительная черта красных карликов – высокая активность. Вспышки в рентгеновском диапазоне, периодически происходящие на Проксиме Центавра, сильнее самой интенсивной вспышки на Солнце примерно в 400 раз. Как такое излучение скажется на возникновении и поддержании жизни неизвестно. Может быть, такая супервспышка сможет породить цепь химических реакций с образованием молекул органических веществ, но, с другой стороны, она способна «сорвать» с планеты атмосферу. Обладай планета Proxima b , как и Земля, собственным магнитным полем, губительное действие радиации было бы уменьшено, но удаленно его наличие не обнаружить.

В результате самых мощных вспышек на Солнце в окружающее пространство за несколько минут уходит до триллиона мегатонн в тротиловом эквиваленте. Это примерно пятая часть энергии, излучаемой Солнцем за одну секунду, и вся энергия, которую выработает человек за миллион лет (при условии ее производства современными темпами). Супервспышки происходят, как правило, на более крупных звездах спектральных классов F8-G8 - массивных аналогов Солнца (относящегося к классу G2). Эти светила обычно не быстро вращаются вокруг своей оси и могут находиться в составе тесной двойной системы. Мощность супервспышек превышает типичные солнечные вспышки в десятки тысяч раз, однако, ученые не исключают возможность такого катаклизма и на Солнце.

Кроме этого, планета Проксима б в силу своей близости к звезде всегда повернута к ней одной стороной, то есть находится в состоянии приливного захвата, как Луна по отношению к Земле. Это значит, что одна половина планеты постоянно нагрета, а другая всегда холодна. Моделирование показало, что это не станет непреодолимым препятствием для существования жизни при условии наличия плотной атмосферы. Постоянные конвективные потоки обеспечат теплообмен между половинами планеты и в «приграничной полосе» может установиться комфортная температура.

Вероятнее всего, такая большая планета образовалась в удаленных районах системы и, со временем, переместилась в нынешнее положение. Глядя на Солнечную систему можно утверждать, что это небесное тело содержит большое количество воды.

Проксима Центавра, вероятно, является частью тройной звездной системы, к которой относится также двойная звезда альфа Центавра, звезды в ней разделяет всего 23 астрономические единицы. Период обращения красного карлика вокруг двух солнцеподобных звезд составляет более 500 тысяч лет.

Полет к альфа Центавра

Астрофизиком Филипом Любиным (Калифорнийский университет в Санта-Барбаре) предложено направить к ближайшей звезде группу маленьких автоматических станций с . Система лазеров на орбите Земли разгонит их до околосветовой скорости. Аналогичная идея предложена российским бизнесменом Юрием Мильнером и британским физиком-теоретиком Стивеном Хокингом.

В планы обоих миссий входит только пролет сквозь систему, ведь затормозить будет невозможно.

Затруднения в реализации проекта связаны с его технической составляющей и ценой. Для реализации проекта Любина потребуется развернуть на орбите Земли группировку, в сто раз по массе превосходящую МКС. Миниатюрному зонду потребуется 15 лет, чтобы достичь Альфа Центавра и прислать обратно несколько фотографий, но цена вопроса – десятки триллионов долларов.

Современному космическому кораблю это удалось бы сделать намного дешевле, но на это потребовалось бы 70 тысяч лет.

Идею Любина поддержал конгрессмен Джон Калберсон, призвавший НАСА приступить к работе над автоматической миссией к альфе Центавра уже в 2017 году. Стартовать станция, по планам республиканца, должна в 2069 году - к столетию высадки астронавтов на Луну. Команда Мильнера-Хокинга также не осталась в стороне. На мероприятии, посвященном открытию Proxima b, было заявлено, что российский бизнесмен запланировал отправку к материнскому светилу и планете зондов уже в 2030 годах. Достичь цели аппараты должны через 20 лет. Первые снимки ближайшей экзопланетной системы на Земле увидят в 2055 году.

Идеи ученых и политиков большинство их коллег восприняли со скепсисом, и на первом плане остается удаленное исследование Proxima b. Проблемы при наблюдении с Земли и из ближнего космоса могут возникнуть из-за малой светимости и скромных размеров Проксимы Центавра.

Близость открытого мира к Солнцу делает из него главный объект для будущих исследований. Кроме того, вероятно, на орбите Проксимы Центавра есть суперземля, расположенная за пределами зоны, подходящей для жизни. Период ее обращения вокруг звезды составляет от 100 до 400 суток.