Как подобрать контроллер для солнечных батарей. Солнечный контроллер. Для чего нужны контроллеры заряда аккумуляторов

  • 19.09.2020

В 21 веке уже ни для кого не секрет, что энергию солнца можно трансформировать в электрический ток. Такое преобразование достигается с помощью специального оборудования – . Но не все знают, каким образом и в каких отраслях могут применяться солнечные батареи.


Сперва следует сказать о том, что данное оборудование может использоваться и в автономных системах, и в сетевых. То есть оно распространено во многих сферах, среди которых:

  • сельскохозяйственная отрасль;
  • телекоммуникации;
  • навигационные системы;
  • подсветка автодорожных знаков ночью;
  • системы уличного освещения и т.д.

Но использование фотоэлектрических установок может демонстрировать низкую эффективность, если не задействован контроллер заряда, обеспечивающий контроль за процессом . Этот прибор может выступать отдельной единицей или монтироваться в инверторы либо блоки бесперебойного питания. Различают несколько разновидностей контроллеров заряда солнечных батарей – ШИМ и МРРТ.


МРРТ контроллеры

Такие контроллеры наделены важной функциональной особенностью – поиск точки максимальной мощности. Электрическая энергия, которая вырабатывается батареями, должна максимально применяться в нагрузке – один из главных принципов контроллера данного вида.

Чтобы иметь четкое представление о работе МРРТ контроллеров, для начала нужно разобраться, что такое точка максимальной мощности. В данной точке значение напряжения, а также силы тока определяются несколькими аспектами, главными из которых являются яркость света, нагрев батареи и угол падения лучей. Поскольку эти величины непостоянны, точка максимальной мощности тоже будет изменять собственное положение. И чтобы оборудование работало наиболее эффективно, и производило как можно больше электроэнергии от солнца, необходим аккумулятор, подстраивающийся под регулярно меняющиеся параметры. Но даже он не способен точно «ловить» точку максимальной мощности – и тут на помощь приходят контроллеры заряда МРРТ.

Согласно с результатами исследований, данная технология позволяет достичь увеличения эффективности солнечных батарей на целых 25 процентов.


ШИМ контроллеры

Применяющаяся же в ШИМ контроллерах технология, дает возможность достигнуть постоянного напряжения аккумуляторного заряда благодаря коммутации солнечной батареи. Схема действия данных устройств такова: в момент достижения заявленной величины напряжения на аккумуляторной батарее, контроллер выполняет функцию снижения тока заряда и предотвращения перегрева аккумулятора. Также такие контроллеры учитывают «возраст» батарей, понижают степень выработки газа (за исключением AGM и GEL технологий, которые вообще не выделяют газ), повышают способность принятия заряда, и обеспечивают выравнивание качества их отдельных элементов.

Получаемая солнечной батареей энергия применятся наиболее эффективно, если установлен ШИМ контроллер – на 30 процентов больше энергии для аккумуляторов, понижение стоимости системы, расходование электроэнергии с максимальной пользой.

Выбираем контроллер – МРРТ или ШИМ

МРРТ устройства позволяют достигнуть большей эффективности, в сравнении с ШИМ, однако к их минусам относится цена – почти вдвое большая. Исходя из этого, для небольших мощностей, когда применяется 1-2 солнечных модуля, лучше приобрести ШИМ контроллер – на столь маленьких «масштабах» установок, МРРТ будет демонстрировать практически ту же эффективность, что и ШИМ, лишь немногим большую. Если же у вас уже есть небольшая мощность солнечных модулей, но в будущем вы хотите ее нарастить с помощью добавления новых единиц оборудования, то в таком случае рекомендуется купить МРРТ контроллер.

Как вы уже могли понять из приведенных выше материалов, солнечные батареи для высокоэффективной работы обязательно должны быть оборудованы контроллерами заряда. Ведь контроллер является одной из наиболее важных составляющих всей системы, которая выполняет значимые функции – регулировка температуры, режима зарядки и многое другое.

К сожалению не все продавцы данного оборудования, как в наземных магазинах, так и во всемирной сети интернет, хорошо разбираются в реализуемых устройствах. По этой причине перед покупкой лучше собрать о них полную информацию, чтобы сделать правильный выбор. Также желательно покупать в надежных магазинах, которые пользуются доверием покупателей и хорошей репутацией.


Современные контроллеры заряда оборудованы большим количеством различных защит. Если говорить конкретнее, то это защита от перезарядки, перегрева, недопущение коротких замыканий и так далее. За счет этого достигается надежная, качественная и стабильная работа прибора. И перед тем как остановить свой выбор на том или ином контроллере, обязательно выясните, какие конкретно имеет защитные схемы устройство, достаточно ли оно защищено.

Сегодня купить контроллер заряда не проблема – множество магазинов предлагают такую аппаратуру своим покупателям. Но иногда случается так, что потребитель обнаруживает, что контроллер не совсем подходит для солнечной батареи, существует некая «несовместимость», в паре их работа оставляет желать лучшего. Поэтому будьте внимательны при выборе данных приборов и доверяйтесь только надежным продавцам, которые в своем деле считаются профессионалами – в таком случае покупка не разочарует вас и будет служить «верой и правдой» в течение долгого времени.

Альтернативная энергетика с каждым годом распространяется все шире. Соответственно растет спрос на солнечные батареи и контроллеры заряда для аккумуляторов. И это не удивительно, ведь одним из классических примеров свободной энергии является энергия солнца. Ее используют тремя основными способами:

  1. Гелиоколлектор.
  2. Солнечный концентратор.
  3. Солнечная батарея.

Если первые два метода заключаются в концентрировании и передачи тепла, то третий позволяет преобразовать солнечный свет в электроэнергию. Однако в альтернативной энергетике есть одна существенная проблема, чтобы в ней разобраться, нужно провести аналогию с классическими методами «добычи» электроэнергии.

Дело в том, что в привычных ТЭЦ и АЭС генератор приводит в движение паровая турбина, на ГЭС – течение воды. Это процесс беспрерывный. В случае альтернативной энергетики все немного иначе. Ни ветер, ни солнце не светит постоянно. Бывает штиль, облачность, ночь, в конце концов. А электроэнергия, в большей степени, требуется именно в темное время суток. Как же быть? Необходимо запасти ее в аккумуляторы.

Для чего нужен контроллер заряда для солнечной батареи?

Контроллер для солнечных батарей
Аккумуляторы были изобретены для того, чтобы в них запасать энергию. Поэтому они нашли широчайшее применение в альтернативной энергетике, в установках малых и крупных масштабов. Но есть ряд проблем:

  1. Солнечный свет в течение светлого времени суток имеет разную интенсивность.
  2. В зависимости от схемы соединений вашей СЭС на выходных клеммах панелей может быть разная величина напряжений.

Контроллер заряда солнечной батареи как раз и нужен для того, чтобы преобразовать энергию, которую отдают устройства в правильный для аккумулятора «вид». С его помощью потоки энергии распределяются таким образом, чтобы обеспечить зарядку приборов в правильном режиме.

Устройство не только помогает зарядить аккумулятор, но и благодаря тому, что этот процесс становится достаточно оптимизированным – срок ее жизни значительно продлевается.

Виды контроллеров для солнечной батареи


Виды контроллеров заряда солнечной батареи

В современном мире выделяют три типа контроллеров:

— MPPT-контроллер;

On-Off – это простейшее решение для заряда, такой контроллер напрямую , когда его напряжение достигнет 14,5 вольта. Однако такое напряжение не свидетельствует о полном заряде аккумулятора. Для этого нужно какое-то время поддерживать ток, чтобы АКБ набрала необходимую для полного заряда энергию. В результате вы получаете хронический недозаряд аккумуляторов и сокращение их срока службы.

ШИМ-контроллеры поддерживают нужное напряжение для зарядки аккумулятора просто «срезая» лишнее. Таким образом, зарядка прибора происходит вне зависимости от напряжения, выдаваемого солнечной батареей. Главное условие, чтобы оно было выше, чем необходимое для заряда. Для аккумуляторов на 12 В, напряжение в полностью заряженном состоянии находится на уровне 14.5 В, а в разряженном около 11. Этот тип контроллеров является более простым, чем MPPT, однако, обладает меньшим КПД. Они позволяют наполнить АКБ на 100% от емкости, что дает значительное преимущество перед системами типа «On-Off».

MPPT-контроллер – имеет более сложное устройство, способное анализировать режим . Его название в полном виде звучит, как «Maximum power point tracking», что на русском языке значит – «Отслеживание точки максимальной мощности». Мощность, которую выдает панель, очень зависит от количества света, который на нее падает.

Дело в том, что ШИМ-контроллер никак не анализирует состояние панелей, а лишь формирует необходимые напряжения для зарядки АКБ. MPPT отслеживает его, а также токи, выдаваемые солнечной панелью, и формирует выходные параметры оптимальные для заряда накопительных элементов питания. Таким образом, снижается ток во входной цепи: от солнечной панели до контроллера, и рациональнее используется энергия.


Виды контроллеров солнечных панелей

Что такое Точка Максимальной Мощности?

ВАХ элементов солнечной панели не линейна. Она способна выдавать номинальные токи до определенного выходного напряжения. При достижении нужных параметров ток, отдаваемый батареей, снижается. Точкой Максимальной Мощности называется состояние, когда панель дает максимальные напряжение и ток, после этой точки при повышении выходного напряжения падает и ток. MPPT-контроллер стремится использовать именно тот режим солнечной батареи, при котором созданы условия для достижения ТММ. Исходя из этого, следует, что мощность, отдаваемая такими приборами, будет выше.

Однако существует один нюанс, о котором внимательные читатели уже могли догадаться. Если ШИМ-контроллер независимо ни от чего выдает свои Вольты и Амперы, аккумуляторы будут заряжаться даже при минимальном освещении панели, когда ее выходные параметры малы. Тогда как MTTP контроллер может просто не отреагировать на это. Также существуют отдельные модели с возможностью настройки и адаптации под разные условия окружающей среды.

Внимание! Использование этого типа контроллеров может дать прирост эффективности установки (КПД) до 30%.

Можно ли обойтись без контроллера?

Грамотно выбранный контроллер снижает дальнейшие вложения на обслуживания вашей системы альтернативного электроснабжения. Неправильные процессы заряда аккумулятора ведут к снижению его ресурса. Что будет если не использовать контроллеров вообще? В случае, когда солнечная батарея подключается напрямую к АКБ, ток заряда не будет контролированным. Дело в том, что напряжение в точке максимальной мощности для 12-ти вольтных моделей солнечных панелей достигает значений выше 15,5 вольт. Большой ток заряда вызовет закипание ячеек в аккумуляторах, что повлечет за собой выделение тепла и повреждение целостности батарей.

Правильный режим заряда сохранит ресурс устройства, и вам не нужно будет проводить неплановую замену.

На что смотреть при выборе?

При покупке контроллера заряда нужно учитывать:

  • Мощность установки.
  • Количество батарей.
  • Напряжение системы (12, 24 вольта, или иные, в зависимости от конструкции и соединения панелей).
  • Ток заряда.

Некоторые батареи продаются с возможностью использования в цепях 12 и 24 вольта, например, BlueSolar MPPT.

Ток заряда – характеризует скорость зарядки ваших АКБ. Обычно его выбирают по формуле «Емкость/10», т.е. для аккумулятора емкостью в 50 А/ч достаточно тока в 5 А. Однако, если у вас стоит целая батарея аккумуляторов, общей емкостью в 200 А/ч, тогда понадобится контроллер способный выдать ток до 20 А, это минимум.

Контроллер заряда является очень важным узлом системы, в которой электрический ток создают солнечные панели. Устройство управляет зарядкой и разрядкой аккумуляторных батарей. Именно благодаря ему, батареи не могут перезарядиться и разрядиться настолько, что восстановить их рабочее состояние будет невозможно.

Такие контролеры можно сделать своими руками.

Самодельный контроллер: особенности, комплектующие

Устройство предназначено для работы только , которая создает ток с силой, не более 4 А. Емкость аккумулятора, зарядкой которого , является 3 000 А*ч.

Для изготовления контроллера нужно подготовить следующие элементы:

  • 2 микросхемы: LM385-2.5 и TLC271 (является операционным усилителем);
  • 3 конденсатора: С1 и С2 являются маломощными, имеют 100n; С3 имеет емкость 1000u, рассчитан на 16 V;
  • 1 индикаторный светодиод (D1);
  • 1 диод Шоттки;
  • 1 диод SB540. Вместо него можно использовать любой диод, главное, чтобы он мог выдержать максимальный ток солнечной батареи;
  • 3 транзистора: BUZ11 (Q1), BC548 (Q2), BC556 (Q3);
  • 10 резисторов (R1 – 1k5, R2 – 100, R3 – 68k, R4 и R5 – 10k, R6 – 220k, R7 – 100k, R8 – 92k, R9 – 10k, R10 – 92k). Все они могут быть 5%. Если хочется большей точности, то можно взять резисторы 1%.

Чем можно заменить некоторые комплектующие

Любой из этих элементов можно заменять. При установке других схем нужно подумать об изменении емкости конденсатора С2 и подборе смещения транзистора Q3.

Вместо транзистора MOSFET можно установить любой другой. Элемент должен иметь низкое сопротивление открытого канала. Диод Шоттки лучше не заменять . Можно установить обычный диод, но его нужно правильно разместить.

Резисторы R8, R10 равны 92 кОм. Такое значение нестандартное. Из-за этого такие резисторы найти сложно. Их полноценной заменой может быть два резистора с 82 и 10 кОм. Их нужно включать последовательно .

Читайте также: Изготовление солнечной батареи

Если контроллер не будет использоваться в агрессивной среде, можно провести установку подстроечного резистора. Он дает возможность управлять напряжением. В агрессивной среде он долго не поработает.

При необходимости использовать контроллер для более сильных панелей нужно провести замену транзистора MOSFET и диода более мощными аналогами. Все остальные компоненты менять не нужно. Нет смысла устанавливать радиатор для регулирования 4 А. При установке MOSFET на подходящем теплоотводе устройство сможет работать с более продуктивной панелью.

Принцип работы

При отсутствии тока с солнечной батареи контроллер находится в спящем режиме. Он не использует ни одного вата из аккумулятора. После попадания солнечных лучей на панель электрический ток начинает поступать к контроллеру. Он должен включиться. Однако индикаторный светодиод вместе с 2 слабыми транзисторами включается только тогда, когда напряжение тока достигнет 10 В.

После достижения такого напряжения ток будет проходить через диод Шоттки к аккумулятору . Если напряжение поднимется до 14 В, начнет работать усилитель U1, который откроет транзистор MOSFET. В результате светодиод погаснет, и состоится закрытие двух не мощных транзисторов. Аккумулятор заряжаться не будет. В это время будет разряжаться С2. В среднем на это уходит 3 секунды. После разрядки конденсатора С2 гистерезис U1 будет преодолен, MOSFET закроется, аккумулятор начнет заряжаться. Зарядка будет происходить до момента, когда напряжение поднимется до уровня переключения.

Зарядка происходит периодически. При этом ее продолжительность зависит от того, каким является зарядный ток аккумуляторной батареи, и насколько мощные подключенные к ней устройства. Зарядка длится до тех пор, пока напряжение не станет равным 14 В.

Схема включается за очень короткое время. На ее включение влияет время зарядки С2 током, который ограничивает транзистор Q3. Ток не может быть больше 40 мА.

Здравствуйте. Попробую я сегодня рассказать про достаточно маломощный (10А ток заряда и разряда) контроллер заряда аккумуляторной батареи от солнечных панелей.
В обзоре подробные фото контроллера внутри и снаружи, а также тестирование…
Итак, всем известно, что солнечные панели преобразовывают световое излучение в электрический ток, таким образом в дневное время можно получать электрическую энергию от Солнца. Для того, чтобы сохранить эту энергию для использования в тёмное время суток, солнечную силовую установку необходимо оборудовать аккумулятором, который в светлое время суток будет заряжаться, а в тёмное отдавать энергию потребителям.
Но для чего же нужен контроллер заряда? И действительно, достаточно просто соединить солнечную батарею с аккумулятором, и при наличии хоть какого-то света, а ещё лучше - Солнца, от солнечной батареи пойдет зарядный ток в аккумулятор и без использования контроллера. Однако у каждого аккумулятора есть предельное значение напряжения, превышение которого ведёт к перезаряду, кипению электролита и в конечном итоге к выходу из строя аккумулятора. То же самое можно сказать и о цикле разряда. Также нельзя разряжать аккумуляторы ниже определённого для каждого типа аккумулятора напряжения. Вот для этих целей и служит контроллер заряда, который следит за правильным зарядом и разрядом аккумулятора, а также имеет и некоторые дополнительные функции. Бывают контроллеры релейного типа, которые просто подключают и отключают солнечную панель от аккумулятора при достижении максимального напряжения, а также бывают контроллеры с ШИМ модуляцией, которые могут регулировать напряжение выдаваемое на аккумулятор. Вторые предпочтительнее, т.к. они более полно заряжают аккумулятор.
В данном случае расскажу о таком контроллере с ШИМ. В виду его небольшой мощности, основное его предназначение - управление автономным освещением. Но обо всём по порядку.
Комплект состоит из самого контроллера и инструкции на английском языке:








Могу сказать, что подобные инструкции читаю редко, но в эту заглянул.
Общий вид и размеры:






Размеры продублирую цифрами: 14х9х3 см (приблизительно);
Корпус сделан из пластика, с 4 «ушами» для крепления, на передней панели присутствуют:
1. Группа из 3 светодиодов (слева сверху). Левый зеленый показывает наличие тока от солнечной панели, средний 2-х цветный индицирует состояние заряда батареи (красный - батарея разряжена, зелёный - батарея заряжена) и правый жёлтый - активация нагрузки;
2. 7 сегментный с точкой индикатор красного цвета для индикации выбранного режима работы;
3. Кнопка под 7 сегментным индикатором для выбора нужного режима работы;
4. Винтовые клеммники для подключения солнечной панели, аккумуляторной батареи, нагрузки.
На обратной стороне корпуса присутствует металлическая пластина, крепящаяся к корпусу 4-мя саморезами, служащая радиатором для силовых транзисторов.
Заглянем внутрь:








Со схемотехнической точки зрения ничего говорить не буду, для интересующихся на фотографиях видны наименования микросхем. Отмечу лишь достаточно аккуратный монтаж и возможность увеличения мощности прибора путём добавления силовых транзисторов на отсутствующие места, естественно делать это нужно с умом.
Перейдём к тестированию, для этого дополнительно к обозреваемому контроллеру нам понадобятся элементы солнечной панели (о них расскажу как-нибудь в другой раз), кусок ламината для крепления этих элементов, 12 вольтовый свинцовый аккумулятор, провода, термоклей, припой, флюс, мультиметр, регулируемый источник питания постоянного тока, 12 вольтовая светодиодная лента играющая роль нагрузки:








Выходные напряжения каждого солнечного элемента используемых для тестирования, судя по ТХ производителя, около 6 вольт, поэтому нам необходимо соединить последовательно 3 таких элемента и закрепить эти элементы и провода с помощью термоклея на куске ламината.
Проверяем что получилось:




Напряжение 17 вольт, ток КЗ всего 7 мА, с напряжением всё нормально, но с током не густо, хотя отмечу, элементы в тени. Откроем шторы:




Напряжение 20 вольт, ток КЗ около 40 мА, уже что-то.
Собираем тестовый макет:


Светодиодная лента не светится, что соответствует выбранному 17 режиму (см.инструкцию), при котором нагрузка включается только при отсутствии тока от солнечной панели, что соответствует тёмному времени суток. Мультиметр показывает 27 мА зарядного тока.
На следующем видео демонстрация работы автоматического освещения при смене дня и ночи (как это так и следующее видео лучше смотреть на весь экран, чтобы подсказки корректно отображались):


Для дальнейших экспериментов подключим вместо аккумуляторной батареи регулируемый источник питания постоянного тока и первым экспериментом будет измерение тока покоя прибора. Т.е. какой ток потребляет контроллер заряда без солнечной панели и нагрузки:


Оказалось всего 5 мА, что сравнимо с током саморазряда аккумулятора.
На следующем видео я постарался продемонстрировать как ведёт себя контроллер заряда при изменении напряжения на аккумуляторе при затенённых солнечных элементах:


Немного слов о режимах работы:
0 - нагрузка включена постоянно (этот режим можно использовать для общего применения);
16 - включение/выключение нагрузки осуществляется кнопкой управления;
17 - нагрузка включена в темное время суток;
01...15 - включение нагрузки после заката на столько часов, какой режим выбран (1...15)
Что еще можно сказать? Контроллер вполне работоспособен в своей области применения. Одной цепочки солнечных элементов явно не достаточно, необходимо впаралель добавить еще несколько, но важно не забывать развязывать их диодами, лучше использовать диоды Шоттки (прямое падение напряжения меньше).
Вот вроде бы и всё, если будут вопросы, спрашивайте в комментариях, постараюсь ответить.

P.S. Да, чуть не забыл, товар предоставлен бесплатно для тестирования.

Планирую купить +52 Добавить в избранное Обзор понравился +26 +59

Схема контроллера заряда аккумулятора от солнечной батареи строится на базе чипа, который является ключевым элементом всего устройства в целом. Чип – основная часть контроллера, а сам контроллер – это ключевой элемент гелиосистемы. Данное устройство отслеживает работу всего устройства в целом, а также руководит зарядкой аккумулятора от солнечных батарей.

При максимальном заряде аккумулятора, контроллер будет регулировать подачу тока на него, уменьшая ее до необходимой величины компенсации саморазряда устройства. Если же аккумулятор полностью разряжается, то контроллер будет отключать любую входящую нагрузку на устройство.

Необходимость этого устройства можно свести к следующим пунктам:

  1. Зарядка аккумулятора многостадийная;
  2. Регулировка включения/отключения аккумулятора при заряде/разряде устройства;
  3. Подключение аккумулятора при максимальном заряде;
  4. Подключение зарядки от фотоэлементов в автоматическом режиме.

Контроллер заряда аккумулятора для солнечных устройств важен тем, что выполнение всех его функций в исправном режиме сильно увеличивает срок службы встроенного аккумулятора.

Как работает контроллер зарядки аккумулятора

В отсутствие солнечных лучей на фотоэлементах конструкции он находится в спящем режиме. После появления лучей на элементах контроллер все еще находится в спящем режиме. Он включается лишь в том случае, если накопленная энергия от солнца достигает 10 В напряжения в электрическом эквиваленте.

Как только напряжение достигнет такого показателя, устройство включится и через диод Шоттки начнет подавать ток к аккумулятору. Процесс зарядки аккумулятора в таком режиме будет продолжаться до тех пор, пока напряжение, получаемое контроллером, не достигнет 14 В. Если это произойдет, то в схеме контроллера для солнечной батареи 35 ватт или любого другого будут происходить некоторые изменения. Усилитель откроет доступ к транзистору MOSFET, а два других, более слабых, будут закрыты.

Таким образом, заряд аккумулятора прекратится. Как только напряжение упадет, схема вернется в начальное положение и зарядка продолжится. Время, отведенное на выполнение этой операции контроллеру около 3 секунд.

Типы

Данный тип устройств считается наиболее простым и дешевым. Его единственная и главная задача – это отключение подачи заряда на аккумулятор при достижении максимального напряжения для предотвращения перегрева.

Однако данный тип имеет определенный недостаток, который заключается в слишком раннем отключении. После достижения максимального тока необходимо еще пару часов поддерживать процесс заряда, а этот контроллер сразу его отключит.

В результате зарядка аккумулятора будет в районе 70% от максимальной. Это негативно отражается на аккумуляторе.

PWM

Данный тип является усовершенствованным On/Off. Модернизация заключается в том, что в него встроена система широтно-импульсной модуляции (ШИМ). Эта функция позволила контроллеру при достижении максимального напряжения не отключать подачу тока, а уменьшать его силу.

Из-за этого появилась возможность практически стопроцентной зарядки устройства.

Данный типаж считается наиболее продвинутым в настоящее время. Суть его работы строится на том, что он способен определить точное значение максимального напряжения для данного аккумулятора. Он непрерывно следит за током и напряжением в системе. Из-за постоянного получения этих параметров процессор способен поддерживать наиболее оптимальные значения тока и напряжения, что позволяет создать максимальную мощность.

Если сравнивать контроллер МРРТ и PWN, то эффективность первого выше примерно на 20-35%.

Параметры выбора

Критериев выбора всего два:

  1. Первый и очень важный момент – это входящее напряжение. Максимум данного показателя должен быть выше примерно на 20% от напряжения холостого хода солнечной батареи.
  2. Вторым критерием является номинальный ток. Если выбирается типаж PWN, то его номинальный ток должен быть выше, чем ток короткого замыкания у батареи примерно на 10%. Если выбирается МРРТ, то его основная характеристика – это мощность. Этот параметр должен быть больше, чем напряжение всей системы, умноженной на номинальный ток системы. Для расчетов берется напряжение при разряженных аккумуляторах.

Как сделать своими руками

Если нет возможности приобрести уже готовый продукт, то его можно создать своими руками. Но если разобраться в том, как работает контроллер заряда солнечной батареи довольно просто, то вот создать его будет уже сложнее. При создании стоит понимать, что такой прибор будет хуже аналога, произведенного на заводе.

Это простейшая схема контроллера солнечной батареи, которую создать будет проще всего. Приведенный пример пригоден для создания контроллера для зарядки свинцово-кислотного аккумулятора с напряжением в 12 В и подключением маломощной солнечной батареей.

Если заменить номинальные показатели на некоторых ключевых элементах, то можно применять эту схему и для более мощных систем с аккумуляторами. Суть работы такого самодельного контроллера будет заключаться в том, что при напряжении ниже, чем 11 В нагрузка будет выключена, а при 12,5 В будет подана на аккумулятор.

Стоит сказать о том, что в простой схеме используется полевой транзистор, вместо защитного диода. Однако если есть некоторые знания в электрических схемах, можно создать контроллер более продвинутый.

Данная схема считается продвинутой, так как ее создание намного сложнее. Но контроллер с таким устройством вполне способен на стабильную работу не только с подключением к солнечной батарее, а еще и к ветрогенератору.

Видео

Как правильно подключить контроллер, вы узнаете из нашего видео.