Самодельный блок питания для шуруповерта 14в схема. Как сделать блоки питания шуруповерта из энергосберегающих лампочек? Выход есть – переделка шуруповерта в сетевой

  • 09.10.2023

Приобретая аккумуляторный шуруповерт, практически никто не задумывается о сроке службы аккумуляторных батарей. В зависимости от производителя и стоимости инструмента, аккумуляторы могут прослужить исправно и 5 лет, и менее года. Особенно это касается инструмента от безымянного производителя из Китая (а таких на рынке подавляющее большинство). Замена аккумуляторных батарей на новые по финансовым затратам сравнима с покупкой нового инструмента, поэтому часто возникает потребность сделать блок питания для шуруповерта 18В или 12В своими руками.

Требования к источнику питания

Вне зависимости от того, на какое напряжение рассчитан шуруповерт, к блоку питания предъявляются особые требования: при высокой нагрузке на инструмент, например, при закручивании длинных шурупов в твердую древесину или в режиме сверления ток потребления двигателя может повышаться до десятка ампер. Если в режиме холостого хода потребляемый ток составляет не более 1-2 А и достаточно блока питания с мощностью 30-40 Вт, то для нормальной работы требуется мощность порядка 200 Вт.

С аккумуляторными батареями все просто. Специфика их работы такова, что они способны на короткое время выдавать большие токи, восстанавливая рабочее напряжение во время простоя. Возникает вопрос: зарядное устройство для любого шуруповёрта имеет малый вес и габариты, почему бы не использовать его в качестве источника напряжения? Ответ – однозначно нет. Зарядное устройство рассчитано на выдачу малого тока в течение длительного времени, нам же требуются большие токи на короткий срок. Поэтому внешний блок питания должен иметь запас по мощности.

Конструкция блока питания

Самодельные БП для шуруповертов могут иметь различные варианты схемотехнического и конструктивного исполнения:

  • Встроенные в корпус стандартных аккумуляторов;
  • В виде отдельного блока;
  • Импульсные;
  • Трансформаторные.

Теперь подробнее о каждом из них.

Встроенные

Несомненное преимущество встроенных устройств заключается в том, что из внешних деталей остается только лишь сетевой шнур маленького сечения. Самостоятельно изготовить такой блок питания под силу не всем. Тут требуется немалый опыт, поскольку малогабаритные мощные блоки питания можно сделать только по импульсной схеме. Трансформатор необходимой мощности классической конструкции в рукоять шуруповерта не поместится, а с подходящими габаритами будет иметь мощность в единицы ватт, чего хватит только для холостой работы.

Отдельный блок

Ввиду того, что блок питания находится вне корпуса шуруповерта, к нему не предъявляются ограничения по габаритам и массе, поэтому он может быть выполнен с желаемым запасом по мощности. Единственное ограничение – длина и площадь поперечного сечения соединительных шнуров между инструментом и источником питания, ведь, согласно закона Ома, при снижении напряжения при одинаковой мощности потребления растет ток, поэтому низковольтный шнур питания должен иметь большее сечение, чем сетевой на 220 В. К этому добавляется также требование по минимизации падения напряжения на проводах. Толстый шнур имеет повышенную массу и жесткость, что уменьшает удобство пользования инструментом.

Импульсные источники

Импульсные источники питания характеризуются тем, что понижающий трансформатор в них работает на повышенной частоте, в результате чего имеет минимальные габариты при той же мощности. Общие габариты устройства вполне позволяют разместить конструкцию в стандартном корпусе вместо неисправных аккумуляторов. Из минусов – сложность конструкции для самостоятельного повторения.

Трансформаторные устройства

Блоки питания на трансформаторах еще не потеряли своей актуальности ввиду простоты изготовления и надежности. Единственный минус таких изделий – большие габариты и масса, но это не существенно, когда устройство выполнено в виде отдельного блока и установлено стационарно.

Устройства на трансформаторах получили преимущественное распространение среди самодельных устройств, поэтому будут рассмотрены самым подробным образом.

Конструкция трансформаторного блока питания

Данное устройство характеризуется наличием следующих составных частей:

  • Силовой трансформатор;
  • Выпрямитель:
  • Фильтр питания;
  • Стабилизатор напряжения.

Силовой трансформатор представляет собой самую габаритную и тяжелую часть устройства. Он предназначен для преобразования высокого входного напряжения в низкое, соответствующее требованиям подключаемой нагрузки.

Задача выпрямителя состоит в преобразовании переменного напряжения в постоянное. Наибольшей эффективностью обладают мостовые схемы выпрямления, состоящие из четырех диодов или монолитного выпрямительного моста.

Фильтр сглаживает пульсации напряжения после выпрямительного моста.

Теоретически этих элементов достаточно для работы шуруповерта, но скачки напряжения в питающей сети, его просадки из-за увеличения нагрузки могут привести к нестабильной работе двигателя, а увеличение сверх нормы – к выходу из строя.

Задача стабилизатора состоит в поддержании стабильного напряжения на выходе, вне зависимости от величины нагрузки и уровня напряжения питающей сети.

В приведенной схеме можно увеличить емкость конденсатора до 1000-2000 мкФ, а транзисторы использовать типов КТ807, КТ819 с любой буквой.

Основная проблема состоит в подборе трансформатора с необходимым уровнем выходного напряжения. Оно должно быть несколько больше того, что требуется для инструмента, поскольку часть будет оставаться на элементах стабилизатора. Для нормальной работы стабилизатора требуется, чтобы выпрямленное напряжение превышало стабилизированное на несколько вольт. Слишком много нельзя, поскольку его излишек будет падать на ключевом транзисторе, нагревая его, а низкое значение в ряде случаев приведет к снижению выходного напряжения.

Обратите внимание! После мостового выпрямителя и фильтра значение постоянного напряжение будет превышать входное переменное примерно в 1.4 раза.

Таким образом, блок питания для шуруповерта на 12В требует трансформатор с выходным напряжением 12-14 В переменного тока.

Важно! Транзистор обязательно должен крепиться на радиатор охлаждения.

Использование блока питания компьютера

Собрать блок питания для шуруповерта с двигателем 12В своими руками рационально из блока питания от компьютера. Стандартные напряжения материнской платы и внешних устройств компьютера составляют:

  • + 3.3 В;
  • + 5 В;
  • + 12 В;
  • — 12 В.

Стандартные БП способны выдавать в цепи +12 В ток до 10-15 А, что абсолютно приемлемо для большинства моделей шуруповертов. На разъемах питания необходимое напряжение присутствует на черном (масса) и желтом проводах. Остальные провода не нужны, и их желательно отпаять прямо на плате блока питания, чтобы они не мешались и не создавали повода для замыкания.

В некоторых случаях, возможно, использовать компьютерный блок питания для шуруповерта 14 В. Правда будет наблюдаться небольшое падение мощности. А вот шуруповерты на 16 и 18 Вольт с такими устройствами работать не будут. При наличии квалификации можно внести в схему стандартного блока питания изменения с целью повышения напряжения, но рядовому пользователю такое обычно не под силу.

Обратите внимание! Все сказанное относится к устаревшим, но еще встречающимся блокам питания АТ. Более современные ATX требуют некоторых переделок для возможности включения, поскольку оно организовано на материнской плате компьютера специальной схемой.

При должной аккуратности это можно сделать самостоятельно. Для этого на самом большом разъеме устройства нужно найти провод зеленого цвета. Замыкая его через кнопку на черный провод массы, можно включить блок питания.

Используя любой источник, не требуется вносить каких-либо изменений в конструкцию инструмента. Для подачи напряжения следует воспользоваться корпусом от неисправных аккумуляторов, просверлив в нем отверстия для питающих проводов. Сами проводники нужно аккуратно, не расплавив пластик, припаять к выходным клеммам, строго соблюдая полярность.

Собранную конструкцию требуется поместить в подходящий корпус и, при необходимости, снабдить ручкой для переноски.

Бестрансформаторные устройства

В интернете можно встретить рекомендации по переделке пускорегулирующих устройств мощных люминесцентных ламп (экономок) для использования в качестве блока питания шуруповерта. Но мало где говорится, что такие конструкции имеют гальваническую связь с сетью переменного тока и пользоваться ими небезопасно. Не следует повторять подобные конструкции и подвергаться риску удара электрическим током.

Конструирование внешнего источника может послужить временной мерой в качестве замены аккумуляторов, поскольку именно мобильность и независимость от сети являются основным преимуществом аккумуляторных устройств. Неудобно, когда шнур питания путается и мешает работать, особенно в труднодоступных местах.

Видео

На просторах интернета встречается множество схем импульсных блоков питания для шуруповертов. Они или сложны и врятли поместятся в батарейный отсек, или слишком сырые, недоработанные и ненадежные. Глядя на подобные схемы возникает много вопросов, ответов на которые нет.

Данный блок питания адаптируется под любой батарейный шуруповерт путем подбора вторичной обмотки, помещается в корпус батарейного NiCd отсека и самое главное - уверенно переносит "холодный" старт двигателя. Известно, что двигатель шуруповерта имеет значительный стартовый ток, который способен вывести из строя даже мощные ИБП или как минимум спровоцировать срабатывание защиты. Описываемое устройство справляется с большими импульсами тока, обладая при этом довольно простой конструкцией.

Схема

Вот несложная схема блока, схема была нарисована на скорую руку, может позже уделю ей время и перерисую в более понятный вид. Картинка увеличивается по нажатию.

Прототипом взята схема из советских времен и усовершенствована с помощью советов обитателей форума "Радиокот". По сути это схема электронного трансформатора с "лишними" для китайских производителей деталями. Добавлен узел обратной связи по напряжению, он выделен красным. В идеале эта часть схемы не задействована, но это в процессе наладки.

Транзисторы взяты SBW13009 с запасом, это повышает надежность блока в целом. Схема обладает весьма полезным свойством: благодаря резисторам в эмиттерных цепях, блок во время холодных пусков, когда токи значительно превышают номинальные - повышает частоту преобразования. Благодаря этому импульсы больших токов ему не страшны. Запуск выполнен на VS1 и блокируется диодом VD5, когда устройство выходит на автогенераторный режим. В процессе опытов с блоком было решено отказаться от узла защиты, которая блокирует запуск при перегрузке - с шуруповертом она будет только мешать.

По совету "радиокотов" был введен снаббер C5R3, он снижает обший уровень помех от блока, уменьшает потери на коммутацию транзисторов и предотвращает появление сквозных токов. Выпрямление во вторичной цепи происходит по схеме со средней точкой, благодаря такому решению количество диодов уменьшено до 2 (диодная сборка) и уменьшены потери на тепло. Так же, для уменьшения потерь взята сборка из диодов Шоттки.

В отличие от электронного трансформатора (ЭТ) в схеме реализованы две обратные связи, по току и по напряжению. Благодаря этому блок запускается без нагрузки. Однако практика показывает, при работе вхолостую нагреваются силовые ключи, поэтому если удается добиться уверенного пуска шуруповерта без ОС по напряжению - C15 попросту не впаивается в схему.

Конденсаторный баян на выходе, вместо одного электролита необходим по причине тех же больших пусковых токов. Когда у меня стоял один конденсатор, его выводы плавились при определенном положении кнопки шурика. То есть выводы одного конденсатора не рассчитаны на такие токи, в принципе, как и сам одиночный конденсатор.

Резистор R8 выполняет две роли: первая - это не позволяет на холостом ходу развиться напряжению выше номинального, вторая - с отключенной ОС по напряжению дает пусковой ток во вторичной цепи и позволяет запуститься ШИМ-у шуруповерта.

Перемычка "П" используется в процессе наладки блока, при первом пуске и настройке вместо нее подключается лампа накаливания 100Вт, при испытании на шуруповерте просто замыкается перемычкой или предохранителем.

Детали

Рассмотрим используемые детали и возможность их замены.

Транзисторы

В качестве силовых ключей VT1-VT2 использованы биполярные n-p-n транзисторы SBW13009 в корпусе TO-3PN. Встречаются они в качественных АТХ-блоках, иных мощных импульсниках. В компьютерных АТХ обычного качества чаще встречаются MJE13009 в корпусах TO-220, их токовые параметры в два раза меньше. Их так же можно использовать, но нужно 4 транзистора вместо 2 и включать их нужно попарно, с индивидуальным резистором в эмиттере.

Данные транзисторы используются в мощных ИБП, поэтому снять их откуда-либо получится редко. А использовать MJE13009 как замену я бы не рекомендовал. Лучше раскошелиться на мощные, стоимость их в районе ста рублей за штуку.

Коммутирующий трансформатор

Трансформатор Тр2 намотан на колечке из феррита с прямоугольной петлей намагничивания. Такие кольца встречаются в подобных автогенераторных преобразователях - ЭТ, балласт энергосберегающей люминесцентной лампы. В светодиодных лампах таких колец нет! Категорически не рекомендую использовать обычный феррит, блок будет работать, но очень ненадежно, на транзисторах будет рассеиваться много тепла, сквозные токи будут обычным делом. Желтые кольца из компьютерной техники так же не подойдут!



Вариант извлечения из ЛДС энергосберегающей лампы мне кажется самым доступным - колечко можно взять из сгоревшей лампы. Так как обмотки будут выполнены обмоточным эмалированным проводом, нужно покрыть кольцо парой слоев цапонлака, на крайняк лаком для ногтей без блесток. Главное проследить чтобы лак попал на всю поверхность, в том числе на внутреннюю сторону. Лак выступает в качестве дополнительной изоляции.

Все обмотки выполнены эмалированным проводом ПЭЛ или подобным, если имеется ПЭЛШО (в дополнительной шелковой оплетке) это еще лучше. Обмотка 1 содержит один законченный виток провода не тоньше 0.8 мм. Для дополнительной изоляции его лучше поместить в отрезок изоляции монтажного провода. Обмотки 2,3,4 содержат по 4 витка 0.3-0.4 мм. Очень важно мотать все обмотки в одну сторону и помечать начало, и конец!

Силовой трансформатор

Трансформатор Тр1 намотан на двух сложенных вместе ферритовых кольцах К31х18.5х7 М2000НМ. Первичная обмотка содержит 82 витка провода 0.6 мм. Обмотка намотана по всей окружности кольца. Кольца изначально изолированы от обмотки, так же между обмотками следует выполнить надежную изоляцию. Я использовал изоленту, но лучше использовать более термостойкую, например лакоткань.

Сетевую обмотку следует аккуратно уложить виток к витку по всей окружности. Если провод не влез в один слой - нужно изолировать первый и домотать вторым слоем. Для намотки удобно использовать челнок-мотовило из более толстой проволоки.

Данные вторичной обмотки зависят от рабочего напряжения шуруповерта, для 12-вольтового 8+8 витков (16 витков в одну сторону с отводом от середины) провода не тоньше 1.4 мм. Вообще диаметр провода вторичной обмотки следует брать максимально возможный. Лучше мотать жгутом из нескольких жил (4-5 шт) провода 0.8-1 мм. Главное, чтобы обмотка уместилась в окно колец. Я к примеру, взял провод с дросселя АТХ. Про точный подбор витков для шуруповертов более 12 В или меньше немного ниже.

Во время намотки вторичной обмотки следует оставить свободное место под 2 витка обмотки номер три. Выполнить ее можно как эмалевым проводом 0.3, так и монтажным. Обмотки один и три следует помечать, где начала.

Два витка обмотки 3 должны находиться на свободном от вторичной обмотки месте.

Для трансформатора можно использовать ферритовые кольца проницаемостью 2000 других, близких размеров, главное, чтобы площадь поперечного сечения колец была не меньше. В магазине я нашел кольцо R36x23x15 PC40, в недалеком будущем испытаю его. Такое колечко может заменить два К31х18.5х7. Аналогично коммутирующему трансу, желтые комповские кольца неприменимы!

Некоторые умельцы на форумах утверждают, что мотали данный трансформатор на кольце К28Х15Х11. Возможно так и было с другими намоточными данными (первичка 100+ витков), я не рекомендую рассматривать такой вариант - нужно обладать нехилым мастерством, чтобы уложить все обмотки на маленькое кольцо!

Если для обмоток используется б/у-шный провод, следует пристально следить, чтобы лаковая изоляция не была повреждена!

Дроссель

А вот для дросселя L1 желтое колечко наоборот в самый раз! Точнее не любое желтое, а именно с дросселя групповой стабилизации (ДГС) из компьютерного блока питания. Я применил кольцо с внешним диаметром 27 мм. Намотать нужно не менее 20 витков проводом, сечением не ниже, чем у вторичной обмотки Тр1.

Конденсаторы

Все конденсаторы "горячей" части схемы должны быть рассчитаны не менее чем на 400В. В качестве C3-C4 я применил пленочные из АТХ, они на 250В, терпимо, но лучше ставить на 400. Емкость их может быть ниже, но тогда может произойти снижение мощности. Так же можно снизить C2 с 200 мкф до 100, возможно, тогда падение напряжения на нагрузке будет более крутым.

Конденсатор снаббера C5 минимум на 1000В, изначально берется 3.3n и подбирается по нагреву резистора. C15 достаточно на напряжение 50В.

В низковольтной части C6-C7 не ниже 50В, электролитические C8-C14 не ниже 25В. Количество электролитических кондеров не принципиально, главное не меньше 5 шт, номиналом 100-1000 мкф.

Резисторы

Резисторы берутся согласно указанных на схеме номиналов и мощностей. R3 взят из снаббера АТХ, габариты его несколько больше стандартных 2ВТ, поэтому не могу сказать о его мощности точно. Данный резистор может прилично греться, поэтому мощность его лучше брать побольше.

В качестве R1 взят термистор из того же АТХ, он очень малогабаритный. В крайнем случае его можно заменить на резистор 3-5 Ом 5Вт, но он занимает много места.

Диоды

Диодный мост VDS1 на 3-4А из полюбившегося АТХ, можно заменить на четыре диода 400В 3А. Диоды FR107 взяты оттуда же, меняются на любые другие с обратным напряжением не менее 1000В. Динистор VS1 можно взять из сгоревшей лампы вместе с кольцом, как правило, динистор целый.

Диодная сборка из двух диодов Шоттки VD3-VD4 - S30D40C взята с 5-вольтовой шины АТХ. Держит она 40В и 30А. Вообще, эти диоды можно взять на свое усмотрение, напряжение должно превышать рабочее в два раза и ток 15-20А. Для не слишком мощных шуруповертов можно брать сборку с 12-вольтовой шины АТХ, это актуально, когда напряжение питания шуруповерта превышает 20В, 40-вольтовая S30D40C становится не так надежна. Запас по напряжению необходим, ибо на выходе силового трансформатора могут присутствовать выбросы, превышающие номинальные значения.

Налаживание

Для налаживания следует собрать схему на макетной плате, категорически не советую собирать сразу рабочую конструкцию. Слишком большой разброс параметров трансформаторов может потребовать дополнительных решений.

Первый пуск

Для первого включения вместо перемычки "П" подключается лампа накаливания 220В 100Вт. Так же, на выход нужно подключить лампу 20-30Вт, автомобильную или галогенку 12В. Перед пуском C15 выпаивается. Правильно собранный блок начинает работать сразу: при включении галогенка на выходе светится (напряжение около 14В), защитная лампа слабо тлеет. При включении без нагрузки в трансформаторе Тр1 слышен слабый писк - это попытки пуска VS1. Защитная лампа не должна вспыхивать при включении, без нагрузки на выходе блока лампа даже не тлеет.

Работа без нагрузки

Если все совпадает с описанным - можно продолжать, если нет - ищем ошибки в монтаже или неисправные компоненты. Далее нужно определить надобность ОС по напряжению - на выход следует подключить шуруповерт. При включении шура, он должен запускаться, защитная лампа вспыхивать. Возможно, пусковых импульсов будет недостаточно для старта электроники шуруповерта. На выход подключают вольтметр и контролируют напряжение, оно должно быть в районе рабочего. При напруге в 2-3В следует уменьшить сопротивление R8, чтобы на выходе появилось устойчивое 13-15В. Резистор R8 не должен греться, максимум чуть теплым, для меньшего нагрева можно увеличить его рассеиваемую мощность. Если удалось подобрать резистор и шурик работает без дополнительной нагрузки - ОС по напряжению не нужна и C15 не понадобится вообще. При включенном блоке и не нажатой кнопке шуруповерта из блока слышен слабый писк.

При работе на галогенку транзисторы практически не греются, при работе без нагрузки нагрева нет. Максимум, что должно греться во всей схеме - резистор снаббера R3, но это пока не важно.

Если все-таки шуруповерт не запускается из-за низкого начального напряжения и подбор R8 ничего не дал, в пределах разумного, без нагрева - придется делать ОС по напряжению. Следует подключить цепь с C15, и включить блок без нагрузки. Напряжение на выходе должно быть 13-14В (при указанных намоточных данных вторички). Если блок не хочет запускаться, следует увеличить емкость C15. Так же, следует попробовать поменять местами выводы обмотки 3 силового транса. В итоге нужно добиться стабильного пуска без нагрузки с минимальной емкостью C15. При включениях защитная лампа не должна вспыхивать и даже тлеть. Недостатком ОС по напряжению может стать небольшой нагрев транзисторов на холостом ходу. Нужно погонять блок 5-10 минут для определения приемлемости нагрева.

Альтернативой для холостого запуска может стать дроссель от ЛДС энергосберегайки, включенный параллельно первичной обмотке силового трансформатора. Данный метод обладает высокой стабильностью, однако на предмет нагрева мной не исследовался.

Результатом налаживаний должен стать стабильный пуск блока (с ОС по напр.) или попытки пуска с напряжением на выходе, достаточным для запуска электроники кнопки. На холостом ходу ничего не должно греться, ну или греться незначительно. Исключение может составлять резистор снаббера R3, но это уже следующим этапом.

Вольтаж шуруповерта

Намоточные данные вторичной обмотки 8+8 витков рассчитаны на шуруповерт 12В. Могу с уверенностью сказать, что данная обмотка подойдет к профессиональны моделям 14,4В. Я подключал блок к своему рабочему шуруповерту 14,4В на литиевой батарее, который без проблем закручивает саморезы 4Х80 мм в сырое дерево без предварительного сверления. Такие саморезы от блока конечно не закручивал, но кожу подсодрал, пытаясь остановить вал.

Если вольтаж вашего отличается от 12В, то следует подкорректировать намоточные данные обмотки 2. Доматывая или отматывая витки, нужно мерить напряжение с нагрузкой - галогенной лампой 30Вт, без нагрузки напряжение будет немного больше. Я ориентировался на напряжение питания (12В) + 1В на просадку (можно не учитывать). Вообще, если шуруповерт 14,4В, не следует сразу мотать лишние витки, возможно все будет работать с должной мощностью без добавления витков. Так же хочу отметить 18В шуруповерты - несмотря на надписи на корпусе, зачастую там стоят двигатели на 12В. Про испытания на мощность немного ниже.

Так же нужно иметь в виду, что без нагрузки блок может развивать немного большее напряжение, поэтому хорошим делом будет поискать датащиты на кнопку и максимальное напряжение ее ШИМ-а. Самое главное, чтобы напруга на ХХ не превышала этот максимум. Между прочим, на аккумуляторной батарее шуруповерта без нагрузки так же напряжение немного выше номинального, для 14,4В батареи это 16 с небольшим вольт. Однако, из-за сложности подобрать напряжение обмотки точно, блок может выдавать немного больше или меньше, чем на батарее. В общем здесь все подбирается экспериментально и с головой, а если вы собрали макетный блок - голова работает.

Рабочий пуск

Теперь следует снять защитную лампу и заменить ее перемычкой или предохранителем 3-4А. Не уверен, что от предохранителя есть толк, я его ставил для самоуспокоения. Попробовать пуск с галогенкой на выходе, холостом ходу - все должно быть стабильно и без перегрева.

Теперь можно подключать шуруповерт и оценить мощность вращения. Мой зеленый бош работал так, что наверное с новой батареей было меньше мощности, при этом не перегревался. Для защиты шуруповетра от слишком больших токов в разрыв цепи можно воткнуть ограничительный шунт, заодно и померить токи. Защиту на полевом транзисторе делать я не стал, да и толку от нее не вижу: напряжение падает пропорционально увеличению тока, импульсы тока при слабом нажатии кнопки огромны (хоть и очень короткие) и будут заставлять защиту включаться.

Необходимо проверить конденсаторный баян на выходе на нагрев при больших нагрузках. У меня фиксировалась самая большая нагрузка в момент слабого нажатия кнопки, когда двигатель пищит. При этом ноги одиночного конденсатора обгорали.

Я не смог остановить шуруповерт рукой никак! Зато натер приличные мозоли! Все-таки ограничительный шунт не помешает в рабочем блоке, здесь следует руководствоваться ощущением силы вращения, а не измерениями, и контролировать нагрев двигателя. Я шунт не поставил в конечную версию, слишком много места он занимает. Ориентировочно, шунт, ограничивающий ток в 20А это: 12В(по факту просядет ниже)/20А=0,6 Ом. Взять щунт 0,6 Ом и ориентируясь на мощность вращения корректировать в сторону уменьшения, пока не появится излишнего нагрева.

Китайским мультиметром и шунтом я намерял максимальный ток где-то между 15 и 20А, это при торможении, на сколько хватало сил и руки. При слабо нажатой кнопке, когда двигатель пищит еще не запускаясь, токи были более 20А. Стоит отметить, что измерения очень приблизительные и могут сильно отличаться от реальности - цифровой мультиметр не в состоянии адекватно измерить пульсирующее напряжение на шунте. Если вы совсем новичок и не знаете, как измерить большой ток шунтом и мультиметром - про это будет небольшой обзорчик, а пока... Зачем оно вам надо?

Снаббер

Как я писал выше, цепочка C5R3 может сильно греться, точнее именно резистор. И даже если нагрева нет на ХХ или малых нагрузках, при большой нагрузке резистор может аж вонять. Объясняется это повышением частоты преобразования с повышением выходного тока, следовательно, сопротивление конденсатора уменьшается. Изначально C5 следует брать 3.3 нанофарада (3300 пФ) и подбирать по нагреву резистора, уменьшая емкость. Я остановился на 1000 пФ. Обратите внимание, что щупать детали следует на выключенном блоке и разряженном конденсаторе C2. Выпрямленное и отфильтрованное сетевое напряжение составляет около 310В!

Не стоит уменьшать емкость конденсатора с запасом, чтобы нагрева не было вообще! Тогда от него будет мало толку. Нагрев должен быть терпимым для длительного использования.

Печатная плата

Я плохой проектировщик печаток, поэтому плата у меня получилась громоздкой, двухэтажной. Если кто будет разрабатывать свою печатную плату - буду благодарен если предоставите рисунок, контакты в подвале сайта.

Два уровня платы сделаны из двух кусков стеклотекстолита 70Х70 мм. На первом этаже находятся фильтрующие конденсаторы, силовой трансформатор и мягкими проводами подпаяны транзисторы. Печатка прорезана острым резаком без всякого травления. Монтаж деалей обычный, в отверстие, рисунок со стороны медной фольги. Подпаянные транзисторы находятся на радиаторе под платой вместе с диодной сборкой Шоттки VD3, VD4.

Платы соединены между собой медным одножильным монтажным проводом, перемычка с эмиттера VT1 лишняя, она задумывалась для работы защиты, от которой я отказался.

Вторая плата выполнена поверхностным монтажем. У меня влезли не все выходные конденсаторы, пришлось их добавлять в корпус батареи.

На вторую плату подается сетевое напряжение, с нее же берется выходное. С диодной сборки приходит +, на которую в свою очеред приходят крайние выводы вторички Тр1. При уверенной работе без ОС по напряжению, цепь с С15 не нужна, как и соответствующие этой цепи обмотки.

На плату не влезли все конденсаторы выходного конденсаторного баяна, поэтому несколько конденсаторов пришлось расположить в клеммном углублении батарейного отсека.

Дно батарейного корпуса пришлось вырезать, так как плата не влезла полностью, к тому же для надежности был использован радиатор. В конечном итоге у меня получился такой блок:

При грамотном проектировании и использовании подходящих компонентов, блок все-таки можно поместить в родной корпус батареии не вылазия за его пределы. Мне это почти удалось. С другой стороны, если использовать блок отдельно от шуруповерта, можно вообще не переживать за габариты. Однако в таком случае придется использовать провод от преобразователя до шурика сечением не менее 2,5 мм2. На 4-х метровом проводе 1,5 мм2 мощность немного падает.

Данное решение является интересным с точки зрения применения: никаких ШИМ-ов и сложных схем, его можно применять для питания различных мощных приборов. Не зря ведь эту схему широко используют для питания галогенных ламп!

На этом мы закончим описание, позднее здесь же дам объективную оценку использования блока в реальных, рабочих условиях стройки. Предварительная оценка по мощности вращения: 5+!

Аккумуляторный шуруповерт – удобный и необходимый в хозяйстве инструмент. При эксплуатации «от случая к случаю», он может верой и правдой служить многие годы. К сожалению, через 2-3 года, даже при не очень интенсивной эксплуатации, аккумуляторы шуруповерта практически полностью теряют свою емкость. Исправный инструмент, а пользоваться нельзя… Что делать?

Выбросить и купить новый. Самое разумное решение, если Вы эксплуатируете щуруповерт профессионально. А если он бывает нужен всего лишь несколько раз в году – починить забор, повесить полку и т.п. Рука не поднимается выбросить исправный аккумуляторный шуруповерт. Поиск в Интернете показал, что эта проблема волнует многих. Как же предлагают поступить в данной ситуации экономные россияне и жители братских республик.

Первое, самое очевидное решение - использовать внешний аккумулятор для питания шуруповерта. Старый автомобильный или герметичный свинцово-кислотный от ИБП. Но проблема в том, что шуруповерт даже на холостом ходу потребляет 1,5…3 А, а под полной нагрузкой потребляемый ток превышает 10 А. Придется использовать либо толстые, либо короткие соединительные провода. И то и другое неудобно. Разве что работать с аккумулятором в рюкзаке…

Второе решение – сетевой блок питания шуруповерта. Ведь в большинстве случаев работы ведутся в пределах досягаемости электрической розетки. Несколько теряется мобильность, но зато щуруповерт постоянно готов к работе. В качестве блока питания можно использовать обычный трансформатор с выпрямителем. Просто, но тяжело и громоздко. Компьютерный блок питания легче, но проблема с проводами остается. Кроме того, стабилизированный блок питания при работе на коллекторный электродвигатель с резко меняющейся нагрузкой и искрящими щетками может вести себя непредсказуемо.

Самое разумное, на мой взгляд, смонтировать сетевой блок питания в аккумуляторном отсеке шуруповерта. Кабель питания в этом случае может быть небольшого сечения, гибкий и легкий. При необходимости можно использовать стандартный сетевой удлинитель. Сложность в том, что места в аккумуляторном отсеке очень мало. Тем не менее, задача вполне выполнима. Подобная конструкция описана в журнале «Радио» №7 за 2011г. – К. Мороз. Сетевой блок питания для шуруповерта. Эта статья растиражирована на многих сайтах, но практическая проверка описанной в ней конструкции показала, что электронный трансформатор для галогенных ламп, который предлагает использовать автор, – не лучшее, в данном случае решение.

Генератор с самовозбуждением на двух транзисторах хорошо работает на активную нагрузку, а вот искрящий коллектор и резко меняющаяся нагрузка – тяжелое испытание для него. В общем, после выгорания нескольких транзисторов я отказался от дальнейших экспериментов с электронным трансформатором.

Лучшее решение мне удалось найти, на форуме http://forum.easyelectronics.ru/viewtopic.php?f=17&t=1773 . Его предлагает Дмитрий (dimm.electron) - под таким именем он зарегистрировался на форуме. Собранный по предложенной им схеме блок питания предназначен для установки в аккумуляторный отсек шуруповерта на 12 или 14 В, в котором находилось 10 или 12 никель-кадмиевых аккумуляторов. Схема блока показана на рисунке.

Учитывая, что это должна быть простая и дешевая конструкция «выходного дня» я слегка доработал авторский вариант. С целью экономии места исключил сетевой фильтр. Это конечно плохо, но учитывая, что пользоваться шуруповертом планирую не часто, и в основном вдали от радиоаппаратуры, вполне допустимо. Не хватило места также и для резистора, ограничивающего зарядный ток конденсаторов в момент включения в сеть. Тоже не очень хорошо, но оправдания те же самые…

В схеме максимально использованы детали от старого компьютерного блока питания. Это выпрямительный мостик VD1, конденсаторы C1, C2, трансформатор T1 и диодная сборка VD4. Силовые транзисторы тоже можно использовать от компьютерного блока питания, но они должны быть обязательно полевыми. В моем блоке они оказались биполярными, пришлось приобрести рекомендованные автором IRF840.

Еще одно упрощение – использование обычного выпрямителя VD4 на диодах Шоттки, вместо предлагаемого автором «хитрого» синхронного выпрямителя. Замечу, что необходимо использовать диодную сборку именно из диодов с барьером Шоттки. Отличить ее от обычной можно, если измерить мультиметром в режиме прозвонки прямое падение напряжения на диодах. На диодах Шоттки падает не более 0,2 В, тогда как на обычных диодах около 0,6 В. Учитывая ограниченные размеры радиатора нагрев обычных диодов будет недопустимым.

Ну и, наконец, питание микросхемы DD1 осуществляется через обычный гасящий резистор R3. Автор использует для этого еще одну «хитрую» схему – питание берется с точки соединения транзисторов VT3, VT4 через гасящий конденсатор и дополнительный выпрямитель на диодах. Сложно в наладке – надо довольно точно подбирать емкость конденсатора, он должен быть высоковольтным и термостабильным. Есть вероятность сжечь DD1.

В процессе обсуждения на форуме родился еще один вариант схемы питания – с дополнительной обмотки трансформатора. Это самый лучший вариант, бесполезный нагрев элементов минимален. Но на трансформаторе нужна дополнительная изолированная обмотка на 20-30 В.

Трансформатор – это самый важный элемент схемы блока питания шуруповерта, от качества его изготовления на 90% будет зависеть Ваше мнение об умственных способностях автора разработки. Если использовать первое попавшееся ферритовое кольцо неизвестной марки, ничего хорошего не получится. Кроме магнитной проницаемости у феррита есть и другие параметры, которые очень важны в данном случае. Необходимо использовать специально предназначенный для работы в сильных магнитных полях феррит, например от трансформаторов импульсных блоков питания компьютеров, телевизоров и др. аппаратуры мощностью не менее 200 Вт. Технология намотки тоже очень важна, автор подробно описывает, как должны быть расположены обмотки на сердечнике.

Я поступил проще – использовал готовый трансформатор от старого компьютерного блока питания. Он как раз подходит по всем параметрам. Лучше раскурочить старый блок мощностью 200-250 Вт, в нем высота трансформатора равна 35 мм – как раз помещается в аккумуляторном отсеке. Трансформаторы от более мощных блоков имеют большую высоту и не помещаются в моем корпусе.

Перед выпаиванием трансформатора нужно внимательно рассмотреть, как соединяются его обмотки и с каких выводов запитан выпрямитель +5 В. Тут возможны варианты, может потребоваться небольшая коррекция чертежа печатной платы блока питания шуруповерта. Обращаю внимание, что используется именно 5-и вольтовая обмотка, амплитуда напряжения на ней как раз около 12 В. Другие обмотки не используются.

А вот намотать на такой трансформатор дополнительную обмотку или изменить число витков существующих, к сожалению не получится. Трансформатор залит эпоксидкой и при его разборке велика вероятность сломать сердечник.

В микросхеме IR2153D между выводами 1 и 4 установлен стабилитрон на 15,6 В, поэтому питание нужно подавать обязательно через токоограничивающий резистор. Показанный на схеме пунктиром диод VD5 необходим только при использовании IR2153 без индекса «D». Конденсаторы C1, C2 можно заменить одним – 100…150 МК, 400 В. При его приобретении определяющий параметр – высота, желательно не более 35 мм, иначе может не поместиться в корпус.

Резистор R3 составлен из 4-х последовательно включенных по 8,2К, 2 Вт. Его номинал желательно подобрать при наладке так, чтобы при минимально возможном напряжении в сети, напряжение на конденсаторе C4 не падало ниже 11 В. Для уменьшения бесполезного нагрева номинал этого резистора должен быть максимально возможным, если его уменьшить, просто увеличится ток через этот резистор и внутренний стабилитрон микросхемы.

Элементы R5, R6, VD2, VD3, VT2, VT4 защищают полевые транзисторы от пробоя в случае аварийных режимов работы. Номинал C9 увеличивать не следует, т.к. это увеличит и без того большой бросок тока при включении в сеть. Мостик VD1 должен выдерживать ток не менее 5 А при напряжении 400 В. VD4 – сборка из диодов Шоттки с допустимым током не менее 30А. VD1 и VD4 отлично подходят от компьютерного блока питания. Вентилятор на 12 В, его внешние размеры 40х40 или 50х50 мм. Элементы в корпусах для поверхностного монтажа типоразмеров 0805 или 1206. DD1 в DIP корпусе, обратите внимание на надежность изоляции на плате между выводами 5 и 6.

Чертеж печатной платы показан на рисунке, вид со стороны печатных проводников. Перед ее изготовлением нужно разобрать имеющийся аккумуляторный отсек шуруповерта и убедиться, что плата в него вписывается. Скорее всего потребуется небольшая коррекция, т.к. отсеки у разных производителей имеют небольшие конструктивные отличия.

Силовые транзисторы VT1, VT3 и диодная сборка VD4 монтируются на небольших алюминиевых пластинках. Их габариты – по месту. В корпусе необходимо просверлить вентиляционные отверстия. Вентилятор придется разместить снаружи корпуса – без него длительная работа не гарантируется. Естественной вентиляции в данном случае недостаточно. И не забудьте про предохранитель FU1.

При первом включении блок лучше запитать от источника питания 20-25 В с током 100…200 МА. При этом резистор R3 временно шунтируется другим, с номиналом 1К. Если все нормально, на выходе будет 0,6…1 В. Можно посмотреть форму и частоту импульсов на вторичной обмотке трансформатора. Там должны быть прямоугольные импульсы со скважностью 50% и частотой 50…100 КГц. Частота определяется номиналами R4, C5.

Если все нормально, убираем временно установленный резистор 1К, включаем последовательно с блоком питания шуруповерта лампу накаливания на 60…100 Вт и включаем все это в сеть. В момент включения лампа кратковременно вспыхнет и погаснет, на выходе должно установиться напряжение около 12 В. Если все работает, убираем лампу и проверяем работу блока под нагрузкой около 1 Ом. Наконец, выбрасываем аккумуляторы, устанавливаем блок питания в корпус и проверяем работу шуруповерта в разных режимах.

Если эта конструкция Вас заинтересовала, можете ознакомиться с вариантами схемы от автора и его рекомендациями по самостоятельному изготовлению трансформатора. Также доступны для скачивания два моих варианта чертежа печатной платы в Sprint Layout.

Чтобы самостоятельно сделать блок питания для вашего инструмента, нужно обладать определенными навыками и умениями в области электрики. Если ваш уровень знаний в этой сфере находится на начальном уровне, во избежание потери времени и получения травм электрическим током, лучшим решением будет заказать в магазине новый блок или отнести вышедший из строя в ремонтную мастерскую.

Блок питания для шуруповерта

Все современные шуруповерты работают от аккумулятора. Чтобы он всегда оставался в заряженном состоянии, требуется блок питания. Зарядные устройства разных производителей могут существенно различаться. Во-первых, блоки комплектуются разными элементами, а во-вторых, их вольтаж бывает 12, 14 или 18 вольт.

В зарядных устройствах на 12 В используются транзисторы емкостью до 4,4 пФ, проводимость при этом находится на уровне 9 мк. Для нивелирования показателей тактовой частоты используются конденсоры. В зарядниках, использующих такое напряжение, чаще всего устанавливаются полевые резисторы.

Схема блока питания 12 В

В блоках на 14 В уже применены 5 транзисторов и импульсные конденсаторы. Используется микросхема преобразования тока четырехканального типа. Емкость резистора не превышает 6,3 пФ.

Схема зарядного устройства 14 В

В зарядниках 18 В используются только транзисторы переходного типа. Для нормализации максимальной частоты установлен сеточный триггер. Проводимость тока находится в районе 5,4 мк. На микросхеме находятся 3 конденсатора. Вместе с диодным мостом располагается тетрод. В некоторых моделях используются хроматические резисторы. Иногда применяются дипольные транзисторы.
Схема зарядного устройства 18 В

Блок питания для шуруповерта своими руками

Стандартное зарядное устройство использует трехканальную микросхему. На ней, в зависимости от вольтажа, размещается различное количество транзисторов, например, в заряднике на 12 вольт ставится 4 транзистора.
Чтобы снижать негативные воздействия тактовой частоты, в блоках устанавливаются конденсаторы. Они бывают импульсного или переходного типа. Чтобы минимизировать последствия от перегрузок электрической сети, в зарядных устройствах применяются тиристоры.

Стандартная схема зарядки шуруповерта

Блок питания для шуруповерта из энергосберегающей лампы
Для того чтобы сделать ИБП из энергосберегающей лампы, необходимо содержащийся в каждой лампе электронный дроссель немного изменить, поставив перемычку, и после подключить к импульсному трансформатору и выпрямителю.
Для источников питания небольшой мощности (от 3.7 в до 20 ватт), можно обойтись без трансформатора. Для этого необходимо просто добавить несколько витков полупроводника на магнитопровод располагающегося в балласте лампы дросселя, если там будет место для этого. Обмотку можно делать прямо поверх заводской. Для этого лучше использовать провод с изоляцией из фторопласта.

Блок питания для шуруповерта из зарядного устройства

Один из самых дешевых способов сделать блок питания – это использовать обычное зарядное устройство для смартфона. В каждом доме сейчас их два или более, а если у вас нет лишнего, можно приобрести за 50–100 рублей.

Так выглядят внутренности зарядки от смартфона

Переделка зарядки производится в следующей последовательности:

С помощью эмалированного проводника маленького диаметра нужно добавить один виток обмотки. После этого включаем зарядку и подключаем к аккумулятору шуруповерта. Посредством осциллографа замеряем амплитуду импульсов и определяем напряжение, создаваемое одним витком дополнительной обмотки.
Выпаиваем разъем USB, снимаем тестовый виток и доматываем нужное количество витков до получения необходимого напряжения. Новая обмотка припаивается к заводской последовательно.
Меняем штатный конденсатор и стабилитрон на новые, соответствующие требуемому напряжению.

Импульсный блок питания для шуруповерта своими руками

Для импульсного блока подбирается подходящая микросхема, и сборка осуществляется в следующей последовательности:

Диодные мосты и термистор ставятся на входе.
Устанавливаются два конденсатора.
Для синхронизации работы затворов полевых транзисторов применяются драйвера.
При установке транзисторов фланцы не закорачивают. С помощью изоляционных шайб и прокладок они крепятся к радиатору.
На выходе устанавливаются диоды.

Блок питания для шуруповерта из электронного трансформатора

Чтобы приспособить трансформатор под зарядное устройство вашего инструмента, его нужно доработать. Для этого нужно подключить конденсатор на выходе выпрямительного моста. Емкость определяется следующим образом – 1 мкФ на 1 Вт. Напряжение конденсатора должно быть не меньше 400 В. В разрыв одного сетевого кабеля нужно установить терморезистор, чтобы ограничить пусковой ток.
Диодный мост устанавливается для выпрямления напряжения частотой 30 кГц. Для нормального функционирования устройства требуется обеспечить плавный пуск. С этим отлично справляется дроссель Л1.

Выпрямитель для шуруповерта своими руками

Выпрямитель необходим для преобразования переменного тока в постоянный. Он функционирует за счет полупроводниковых диодов, которые играют роль преобразователей. Чтобы проанализировать работу устройства, применяют осциллограф.
Главным в изготовлении выпрямителя является правильный выбор диодов. Для использования в блоке питания подойдут элементы с показателями обратного тока до 10 ампер. Количество диодов равно 4, и их следует устанавливать по мостовому типу. Если применять схему на одном полупроводнике, полезное действие блока снижается вдвое.

Трансформаторный блок для питания шуруповерта

Трансформаторными источниками питания называются такие приборы, в которых располагается понижающий входное напряжение трансформатор. Помимо него, в таких блоках установлен диодный выпрямитель и конденсатор фильтра.
Конденсатор сглаживает пульсации выходного напряжения. По сути, трансформатор выдает напряжение того же вида, что и в сети 220 вольт, а точнее, синусоидальной. При работе от бесперебойных источников его форма может быть совсем несинусоидальной. Форма выпрямленного напряжения непостоянна во времени, поэтому необходима установка элемента, поддерживающего выходное напряжение постоянной величины, что выполняется на сглаживающем конденсаторе.

Плюсы трансформаторных блоков:

Простота и надежность.
Составные элементы легко найти в продаже.
Отсутствие частей, создающих радиоволновые помехи.

Сетевой блок для питания шуруповерта

Для того чтобы своими руками запитать шуруповерт от бытовой электросети, вам потребуются вышедший из строя аккумулятор, зарядное устройство от него, многожильный провод, изолента, припой, паяльник и кислота.
В первую очередь нужно припаять к контактам зарядника электропровод со штепсельной вилкой. Поскольку в блоке используются латунные клеммы, а в проводе медные жилы, чтобы их спаять, следует использовать в качестве соединителя кислоту. От качества этого соединения напрямую зависит функционирование всего устройства.
На втором этапе работа ведется с вышедшим из строя аккумулятором инструмента. Следует разобрать батарею и удалить из нее внутренние части. При этой операции нужно пользоваться средствами личной защиты, а внутреннее наполнение рекомендуется не выбрасывать в бытовой мусор, а утилизировать в безопасном для людей месте.
На заключительном этапе необходимо провода зарядного устройства спаять с выводами аккумулятора, которые располагаются во внутренней части корпуса.

При самодельном изготовлении блока питания для шуруповерта необходимо тщательно соблюдать технику безопасности при работе с электричеством. Перед началом работы нужно тщательно взвесить все за и против (сколько на это потребуется времени, какова будет стоимость материалов и запчастей), иногда будет проще и дешевле отнести зарядник в специализированную мастерскую или приобрести новый блок.

Если у вас есть шуруповерт и вы в основном используете его внутри помещения, то, думаю, вам будет интересна и полезна данная статья. Тут речь пойдет о переделке 12 вольтового шуроповерта с ni-cd аккумулятором.

Шуруповерт для дома неплохо было бы питать от розетки. Вот сегодня этим и займемся.


Прежде начнем с того в чем собственно заключается проблема. Шуруповерт довольно мощное устройство. Под нагрузкой даже слабый шуруповерт может потреблять до 200 Вт мощности. Аккумуляторы с этим справляются спокойно, но для того чтобы записаться от розетки нужен блок питания, который сделает из 220В переменного напряжения, необходимое нам постоянное напряжение. Блоки питания идут в основном на 12 или 24 В. Таким образом переделывать имеет смысл только 12-вольтовый шуруповерт.



У автора, например, как раз осталась одна мертвая никелевая батарея на 12 В. Вот над ней сегодня и будем издеваться.




Если мы зайдем на наш любимый алиэкспресс, то увидим, что 12 В блоки питания на приличную мощность, измеряемую кстати в китайских ваттах, стоят очень и очень невкусно. По цене выходит чуть-чуть дешевле чем хороший китайский шуруповерт.


Возникает логичный вопрос: а есть ли смысл вообще что-то переделывать? Так что aliexpress нам в решении этой проблемы не поможет. Поэтому хочу предложить вам другой в несколько раз более выгодный вариант.

Блоки питания от компьютеров довольно мощные ребята. Так же найти такой блок питания не составит особого труда. Наверняка у вас дома валяется подобный без дела. А если нет, то можно пойти в любой ремонт компьютеров и за пару сотен рублей купить б/у-шный блок питания, ну скажем на 500 Вт.

Пусть он будет мятый, грязный, весь в пыли, но главное, чтобы он работал. На одной из стенок обычно имеется наклейка, содержащая подробную информацию по линиям питания. На данном блоке мы можем видеть следующие характеристики: 25 А на линию 12 В, а это ни много ни мало 300 Вт мощности.

Для шуруповерта хватит с запасом. Такой блок питания конечно довольно крупный, но в то же время он гораздо дешевле даже китайских блоков на меньшую мощность.






Начнем переделку.
Первым делом нужно разобрать родную батарею и вытащить из нее все аккумуляторы. Также нашей целью является сохранение клеммы держателя и самих клемм, так что все аккуратно разбираем и освобождаем клеммы от аккумуляторов. В планах автора сделать батарейный блок съемным, чтобы можно было работать и от аккумуляторов, и от сети. То есть получится такая универсальная затычка с клеммами и проводами.








К этим клеммам нужно будет припаять провод с сечением, ну скажем 3 мм 2 . По идеи этого должно хватить для того, чтобы энергия не рассеивалось в тепло, даже на длине провода около 2 м. Берем в руки паяльник и предварительно подготовив провода (зачистив от изоляции и облудив), припаиваем к клеммам.

Не знаю, как будет у вас в шуруповёрте, лично у автора получилось загнуть ушки клемм прямо в пластмасску и получилось весьма надежно.








Теперь запоминаем что минусовой провод у нас будет, допустим, синий и вставляем клеммы согласно символам плюс и минус на корпусе батареи.


Подперев снизу, например, отверткой, сверлим насквозь отверстие сверлом диаметром 3 мм. Затем снимаем фаску большим сверлом. Причем снимаем так, чтобы винтик m3 с потайной головкой не торчал.

Ну и остается это дело затянуть гаечкой. Такой вариант с винтиком в разы лучше любого другого крепления.








Также, крайне желательно поставить параллельно клеммам конденсатор на 16 или 25 В и емкостью около 10000 мкФ. Купить конденсатор можно на любом радиорынке, в любом магазине радиотоваров, а также вытащить из убитого компьютерного блока. Есть способ разжиться таким конденсатором на халяву. С большой вероятностью вам его отдадут бесплатно в любом сервисе по ремонту компьютеров. Они их все равно выкидывают. Стоит только попросить. Так что действуйте.

Конденсатор будет служить энергетическим буфером пусковых токов. Это нужно для того, чтобы снизить нагрузку на блок питания. Если этого не сделать, с большой долей вероятности он (блок питания) будет уходить в защиту. Берем и припаиваем. Гаечку в этом случае автор рекомендует приклеить на суперклей. Иначе просто не сможете закрутить.


Далее выводим провод из корпуса. На этом этапе необходимо его каким-то образом зафиксировать. Это нужно для того, чтобы он не создавал нагрузку на клеммы. Фиксацию можно выполнить, например, обмотав шнур на нужной длине изолентой в несколько слоев.
Ну и собственно собираем все обратно.









Ну вот и готово. Получилась вот такая батарея-заглушка с проводами для питания шуруповерта от блока питания.
Теперь пришло время испытания самоделки. Сначала, давайте чисто для интереса попробуем запитать шуруповерт от китайского блока питания на 10 китайских ампер. У автора как раз лежит такой для опытов.


Следим за индикатором работы (синий светодиод на корпусе блока питания). При запуске шуруповерта - блок уходит в защиту.




Со своей задачей он не справляется. Так что вернемся к блоку питания от компьютера. Этот экземпляр имеет две линии 12 В. Одна 25 А на желтом проводе, и вторая также 25 А на желто-черном. Собственно, берем по одному проводу и две земли и соединяем параллельно.
Если у вас только одна линия 12 В, то возьмите просто 2 жёлтых провода и 2 черных. Кстати автор читал на форуме, что у людей на старом двухсотваттном блоке питания с одной линией 12 В, шуруповерт работает замечательно.








Автор решил сделать все по красоте. Поэтому провод будет отключаемый. На помощь придет силовой разъем XT60, стоит на алиэкспрессе порядка 25 рублей.






Это необязательно, просто так будет удобнее.
Для того, чтобы запустить блок питания от компьютера без компьютера, нужно замкнуть контакт PS-ON на землю (GND). Соответственно зеленый провод на черный. Сделать это можно перемычкой из обыкновенной скрепки. Вот и все, блок стартует.






Все лишние провода можно отрезать, но автор этого делать не будет, так как блок ему еще может понадобится для других целей.